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说明

这是指南的完整版本，相比知乎版本有一些内容上的调整，目录内的各标题链接对应于本文内

的页面，正文内各标题链接对应于知乎上的文章，正文内引用的数字小标题也可以直接点击跳转

指南并不是教材，对于中间两章的知识点部分会做重点阐述，其余部分会以提纲的形式简要的

指明方向
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引言

这里是杀猪宰，一个只拿过两次 IOAA GM 的 2023 届天文萌新。当前阶段，在高中学习天文

并不像其他学科一样有非常清晰的学习路线与完善的学习体系，很多人都止步于入坑与观望的门

口，对于有志之士并不友好，因此我决定结合一些自身的经历与看法给学弟学妹们分享一些关于高

中天文竞赛的指南

Remake Document

这篇指南初作于 2023 高考结束后的暑假，现在经过大一的一个学期后对其做一次 remake，主

要的改动包括：删去与增添了部分内容，调整了部分内容的表述，将原 word 稿改为 latex 等
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第零章 天文与天文竞赛

0.1 对天文的基础了解

对于想要参加天文竞赛或者以后想要进一步进行天文相关研究的同学，首先需要明白高中阶

段天文学的各大板块，根据我的经验，高中天文主要可以分为天文常识、天文时事、天文基础知识、

一定的天体物理（主要包括轨道力学、恒星物理、星系学和宇宙学）、必备的数学物理基础、数据

分析能力以及（最重要的）天文观测能力，在之后的指南中，我也会简要分享一些我关于各大板块

的建议

0.2 学天文的必备素养

只要对天文充满热爱，最终一定能寻得属于自己的星辰大海（雾）

天文竞赛从难度上可以说根本无法比肩数理两科，所以学习天文并不需要什么过人的理解能

力或者高超的计算能力，但鉴于天文竞赛前期的倒扣分机制以及后期的题量，学习天文还是需要一

些细心与耐心

0.3 关于天文竞赛

既然选择了天文竞赛这条路，首先需要明确一点：天文竞赛至少在国内没有什么软用（因此非

常建议同时参加其他竞赛（一坤年物竞人欢迎大家报考物理竞赛））所以还是建议学不是很有余力

（没有那么闲）的同学不要走天文竞赛这条路，当然只要热爱，那么坚持下去一定没错

接下来说一下天文竞赛的流程。首先是各地市的天文竞赛，对于大多数地区，这种竞赛还处于

初步阶段，但少部分已经与国赛接轨，另外参加省（市）赛也能提高信心，结识一些本省（市）的

爱好者；之后是全国中学生天文知识竞赛（CNAO），也就是常说的国赛，国赛一般在三月左右举

行初赛，报名在北京天文馆网站（近年来好像也可以学校统一报名参加），考试形式为全选择题，

采取倒扣分制，每年根据决赛名额划定分数线；之后在五月左右举行决赛，地点由北馆于前一年商

定，决赛分为笔试与观测（纸上观测（看星图）和望远镜实操），中间会穿插国家集训队的选拔和

旅游（给老师阅卷的时间），笔试有选择和大题（大题有草稿本，答案写前面，草稿写后面，阅卷

会参考），选择依旧采用倒扣分制

2



第零章 天文与天文竞赛 3

决赛的最后一天会举行颁奖典礼，以最高三名的平均分作为 100进行赋分，在根据赋分划定金

银铜牌（还有 HM（honorable mention 荣誉提名（鼓励奖））），同时颁发 BR（best record 最佳成

绩）、BT（best theory 最佳理论）和 BO（best observations 最佳观测）；国集的选拔以理论和实测

为主，集训队名单一般在国赛结束后公布；7 月左右国集（一般在北京）会举行集训，集训期间通

过考试（和需要）选拔国家队参加本年度的国际比赛（官方说法，实际政策每年在变）

国际比赛主要有三个，分别是 IOAA（International Olympiad on Astronomy and Astro-Physics

国际天文与天体物理奥林匹克），IAO（International Astronomy Olympiad 国际天文学奥林匹克）

和 APAO（在我们这一届的三年都没举办，可能已暴毙），本人只参加过 IOAA，如果想了解 IAO

的可咨询其他学长

IOAA 正如其名，最初是由 IPhO 的一些国家提出的，在近几年（14,15 届）越发物理化（包

着天文皮的物理题）（当然还没到复赛的难度（38,39 除外）），因此想要参加 IOAA 的同学最好

还是需要一些物理基础。同样，IOAA 也是现在规模最大的天文国际赛事，很多国家会派强队参加

（Russia 因为某些原因被禁赛），但金牌总数还是较多，国家队一般能保证 40% 左右的摘金率

图 1: 15th IOAA 分数表

IOAA 接近于国赛与选拔赛的结合，理论（Theory）部分分为短中长问题，分数依次增加，总

分 300，占比最大；实测（Data Analysis）部分一般为两题，主要考察建模能力与数据分析能力（可

以用 991直接拟合），总分 150；观测（Observations）分为两个部分，O-D和 O-T，也就是 diagram
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（图表）和 telescope（望远镜），各占 75 分；满分 600，与国赛一样赋分给牌（新的赋分规则已将所

有参赛者平均分的 2 倍作为 100 分），但是增加了 BD（best data analysis 最佳实测）等奖项，同

时 BR 改为 CW（complete winner）。IOAA 的特色还在于其团队赛，满分 150，不计入个人分，但

可以促进交流（一般为国家打乱组队），IOAA 一般为出国比赛，也可以算一场小旅行吧（本人因

为疫情两次线上）

天文竞赛不比五大竞赛，没有那么多争名逐利，激烈竞争，更重要的是结交更多伙伴，在交流

中学习与成长，正如我们以前调侃所说，APAO 的 AP 是 All Play 的意思，在天文竞赛中收获乐

趣，收获友谊，才是其带给我们的最大意义。
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0.4 天文的相关书籍

0.4.0 FA

Fundamental Astronomy 人称 FA 可以说是你在高中阶段能接触到的最好的天文学教材，没有

之一，内容涵盖面广泛，基本涉及高中天文竞赛的所有内容，也包括纯物理的推导，附录可以作为

数据表与数学基础补充，总结为不可多得的好书。

两个注意点：全英文可能有门槛 纸质版价格有点小贵（不嫌麻烦可以用 pdf 版）

0.4.1 教材类

《简明天文学教程》基础入门教材 以前用的是第三版，现在已有第四版

《基础天文学》经典教材 可以拿课后习题练手

《天文学新概论》可以说在天文竞赛界无人不知，作为基础教材很不错，以前用的是第四版，现

在已有第五版

《天文学物理新视野》、《天体物理导论》

《天体物理学》比较经典的天体物理教材 可能需要一定的物理基础 备战 IOAA 的同学可以参

考学习，感受物理的魅力
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《An Introduction to Modern Astrophysics》/《当代天体物理导论》可以视作 FA 的全面升级

版，内容更加丰富，但也更加深入，适合有一定物理基础的同学

0.4.2 杂志类

基本只推荐《天文爱好者》（应对天文竞赛）可以看天文时事和真题

注：2010 年的爱好者增刊是真题集



第一章 天文常识

1.1 真的天文常识

就比如说太阳系有几大行星，银河系直径是多少这些常识类知识，这些常识在物理课本或者常

见的科普读物里都有介绍，这里不再赘述。

1.2 天文爱好者必备的基础常识

与星图有关的内容，如冬季大三角是哪三颗星、黄道穿过了哪十三个星座等；

与观测有关的内容，如放大倍率的计算等；

与行星有关的内容，如太阳系前四大的卫星、土星有几个卫星等；

与恒星有关的内容，如全天 21 颗亮星是哪些、在哪里等；

与星系、宇宙有关的内容……

作为爱好者，很多东西都像常识一样，但有些人的常识你不一定知道，这块内容可以通过临时

抱佛脚来弥补，但更多注重平时积累。

1.3 天文竞赛需要的“常识”

这部分内容主要涉及一些数据，如各大行星轨道半径等，一些常数会在考试时给出，但有些内

容会默认为已知，也就是所谓“竞赛中的常识”。

7



第二章 天文时事（在预赛与决赛的选择题中

出现）

在天文竞赛中，天文时事的定义很广泛，可以分成如下部分

2.1 实时天象

主要包括太阳类（近几年的日食情况（包括时间、地点、类型），最近一次各类日食，考试当

天太阳所处星座等），月球类（与太阳类似，包括月食及考试当天的月相等），行星类（水星金星的

大距，火木土等的冲日或合，相关的合月天象，考试当天的位置等），小天体类（主要包括彗星的

回归以及流星雨发生时的月相等）等。可以参考每一年 1 月和考试前一个月的《天文爱好者》。

2.2 大事件

主要包括国内外航天领域的大事件，一些天文领域上的重大突破，近年来诺贝尔奖有关天文的

部分。可以参考每个月爱好者的新闻速递栏目

2.3 一些特殊时间

由考试年份决定，如 IAU 成立 100 周年，国际天文馆日等。

总结

用好爱好者，时事不用愁

8



与其他章节的提纲性质不同，接下来的两章将直接做完整的介绍

各 section 对应知乎链接

请注意，高中阶段的天文依旧应当以教材为主，指南只是重点的提要

不能代替整体的学习

9



第三章 天文基础知识

写在前面———关于天文基础知识

我对基础的定义是高于常识（也就是爱好者不能做的天文竞赛题），低于天体物理（尽量避免

超过高中范围的数学物理），这部分内容可以参考 §0.4.1的前三本教材以及 FA 来学习

天文基础部分的内容教材基本上都有涉及，也可以参考真题来做强化训练。根据我的经验，这

部分内容基本可以保到决赛，如果综合成绩优异也能进队参加国际比赛。当然，正如我对这部分的

标题，这只是基础，如果想要取得进一步的成绩，还是建议阅读下一章的天体物理部分

3.1 时间与历法

时间与历法是创建天文学的初衷，也是学习天文的基础。

3.1.1 天文竞赛中所用的时间

现行的时间计量标准

正如这一节的开头所说，时间与历法是创建天文学的初衷，天文学家基于天文观测与日常需

要制定了第一套时间标准，这套标准建立在地球自转的基础上，被称为世界时（Universal Time，

UT）

但是自转本身具有不均匀性，在经过一段时间的摸索后天文界决定采用基于太阳系天体运动

的历书时，但这种方法很快就被丢弃了。1967 年，第 13 届国际计量大会通过了新的秒的定义，将

位于海平面上铯原子（Cs133）基态的两个超精细能级之间在零磁场中跃迁辐射震荡 9192631770 周

所持续的时间定义为秒，以 1958 年 1 月 1 日 0 时为起点，确立了新的时间标准，称为国际原子时

（International Atomic Time，TAI）

虽然 “物理时” 足够精准，但毕竟不完全符合 “天文时” 的目的，为了兼顾两者的优点，现行的

时间计量标准采用协调世界时（Coordinated Universal Time，UTC）

协调世界时以原子时秒长为基础，尽量接近世界时，当两者差距过大（达到 1s）时，会通过闰

秒进行修正。协调世界时向前拨 1 秒称为负闰秒，此时最后一分钟为 59 秒；向后拨 1 秒称为正闰

秒，此时最后一分钟为 61 秒；闰秒一般加在公历年末或公历六月末；全球已经进行了 27 次闰秒，

10
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均为正闰秒；最近一次闰秒在北京时间 2017 年 1 月 1 日 7 时 59 分 59 秒（时钟显示 07:59:60）出

现，这是本世纪的第五次闰秒。

天文上的计时、计日标准

这里首先引入过中天的概念。大家都知道地球上有子午圈，同样的，天球上也有天子午圈，天

子午圈是过南北天极与天顶的大圆，现阶段也可以认为是过南北点与天顶的大圆，天体经过子午圈

就被称为过中天（习惯中我们将过最高点成为上中天，同理过最低点称为下中天）

图 3.1: σ 是上中天，σ′ 是下中天

因此，我们将太阳连续两次上中天的间隔定义为一真太阳日，同样的也可以将其划分为 24 个

真太阳时，我们注意到，真太阳日同时受到地球自转与公转的影响，它并不是均匀的，因此我们重

新定义了一个均匀的时标，称为平太阳日与平太阳时

首先我们在黄道上取出第一个假想点，这个点匀速运动，速度与太阳视运动的平均速度相等，

并在近日点与远日点时与真太阳重合；接下来我们在赤道上同样取出第二个假想点，这个点同样匀

速运动，且速度与第一个假想点相同，两点在春分点与秋分点处重合；于是我们把第二个假想点称

为平太阳，平太阳连续两次上中天的间隔就被定义为一平太阳日。平太阳日就是我们平常所说的

“1 天 24 小时”，一般钟表显示的也是平太阳时。真太阳日与平太阳日的差值称为时差，据此可以

画出时差曲线

我们注意到，虽然平太阳日符合我们的日常习惯，但它同样受到地球公转的影响，并不能严格

反应出地球自转的时间，因此天文上通过定义恒星日与恒星时作为观测标准

我们将春分点连续两次上中天的间隔定义为一恒星日。春分点是假想点，观测上一般使用遥远

的恒星作为替代。结合上图我们注意到，每天相差的 θ 角在一年的叠加后正好为 2π，所以我们可

以通过计算/测量得出一恒星日的数值为 23 时 56 分 4.09 秒。同样的，我们也可以定义出恒星时，

并且由于地球自转的不均匀性，也可以定义真恒星日与平恒星日，这里不做赘述
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图 3.2: 时差曲线

图 3.3: 图像做了夸张处理，我们发现由于公转的影响，太阳日会比自转一圈多走 θ 角
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为了协调不同国家与地区的时间，我们还需要引入地方时的概念

由于自转的影响，不同经度的地点其地方平时是不一样的，因此我们以本初子午线为基准，向

西向东各以 15° 为间隔划分出中央经线，每条中央经线及东西 7.5° 作为一个时区，根据中央经线

确定整个时区内的统一地方平时，称为区时。注意，区时一般由国家统一规定，例如我国采取东 8

区（120°）作为区时，而印度采取半时区东 5.5 区（82.5°）作为区时。本初子午线所在的区时称为

格林威治时间（GMT），这同时也是世界时的基准。

区时反应的只是一个标准，并不能反应出给定经度的确切时间，所以为了得出确切的当地时

间，我们会在区时上叠加一个时间 t，得到的就是地方时，t 的计算方式为

t = (α− α0)× 4m/(◦)

其中 α 是当前经度，α0 是时区对应的经度，α− α0 带正负号

天文上的纪月、纪年方法

从天文的角度上看，“月” 和 “年” 都是由历法定义出来的，因此这一小部分在历法中介绍

恒星时与平时的转换（这里的恒星时与上面定义的恒星 “时” 不同，建议看完天球与坐标一节后再

看）

在精度不高的情况下，我们可以用简单的公式来计算

s = m+ δ · 3m56s/day

其中 δ 是当天与秋分日的天数差

在要求精度的情况下，公式需要改写为

s = m+ S0 + δ · 3m56s/day

其中 S0 是世界时 0h 的格林威治恒星时，一般可在天文年历中查得，δ 是当天与 S0 对应的天数差

3.1.2 天文竞赛中一些常用的时间

这部分内容可以归为常识，主要是指恒星年与回归年、太阳（阴）日与恒星日的关系及数值等，

也包括一些特定的时间，如太阳绕银河系中心旋转一周的时间等。大部分教材都会提到。

3.1.3 天文竞赛中所用的历法

太阴历

太阴历是人类最早使用的一种历法，其以月亮的圆缺阴晴作为基准，把一个朔望周期定为 “月”。

一个朔望月周期为 29.53059 天，近似取为 29.5 天，一个太阴年对应 12 个月，即取 6 大 6 小，共

354 天。太阴历为 30 年置 11 闰。
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与之前提到的概念类似，我们将月亮连续两次上中天的间隔定义为一太阴日，由于月球公转与

地球自转方向相同，太阴日相比平太阳日更长（可以类比成追及问题），通过计算/测量可以得出一

太阴日的长度为 24 时 50 分，这意味着每天月亮都会晚升起 50 分钟，也意味着可能出现一天都没

有月亮升起的情况。

同样的，由于地球公转的影响，朔望月的长度要大于月球公转的周期（类似于恒星日与平太

阳日的关系），因此我们通过月球与某一恒星连续两次同时上中天的间隔定义为一恒星月，通过计

算/测量可以得出一恒星月的长度为 27.322 天。

太阴历很好的符合月相的变化，但不能反应季节的变化，因此并不适用于农牧业的发展

太阳历

太阳历以太阳的周年视运动为基准，是现行公历的基础。我们将太阳连续两次通过春分点的间

隔定义为一回归年，其长度为 365.2422 天，太阳历将回归年作为 “年” 的依据。现行公历 400 年置

97 闰，也就是平时说的逢 4 年 1 闰与 400 年 1 闰。

这里需要注意，现行公历是格里高利历，在格里高利历制定时有一条 “把 1582年 10月 4日的

翌日定为 10 月 15 日”，在计算大跨度时间时可能会让有些同学疑惑：是否需要减去这 10 天？答

案是：一般情况下不需要。我们需要意识到，这 10 天是由于公元前 8 年儒略历 4 年置 1 闰经过千

年的时间积累下来的，而我们在计算大跨度时间时一般都从公元前开始，并采取 400 年置 97 闰的

算法，这种方法已经包含了格里高利历中补偿的 10 天，所以不需要考虑。

由于春分点的进动（在天球一节中会阐述），回归年并不严格等于地球公转的周期，因此类似

的我们定义了恒星年，一恒星年的长度为 365.25636 天

阴阳历

阴阳历兼顾两种历法的优势，其中最具代表性的是我国的农历

农历中的 “月” 与太阴历类似，依照朔望周期划分，并将朔定义为每月的第一天，大小月的安

排依据天象来决定，因此可能出现十二月廿九后正月初一的情况。

农历中的年同样采用 12 个月的记法，但为了符合季节变化，农历 19 年置 7 闰，且置闰为闰

月，闰月的安排由天象决定。

农历中还根据太阳在黄道上的位置安插了 24 节气，24 节气分为 12 中气与 12 节气，中国历

法规定中气不能出现在闰月。

儒略日

由于置闰规则的复杂性，天文上在计算时间时往往采取儒略日的计量方式。儒略日以公元前

4713 年儒略历 1 月 1 日世界时 12 时为起点，向后连续记日，用 JD+ 天数表示，当前的儒略日数
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已达 7 位数。为了简化计算，我们引入约化儒略日，用 MJD+ 天数表示，其中

MJD = JD − 2400000.5

即 MJD 的起算日期为 1858 年 11 月 17 日世界时 0 时
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3.2 天球与坐标

这一部分涉及高于高中数学的部分——球面三角，且相关的天（地）球计算在 IOAA中基本属

于必考（送分）题

3.2.1 数学基础 球面三角

在这里我们先不涉及天球的相关内容，而单单从数学角度介绍球面三角

球面三角的基本性质

我们先假想出一个球面，再用一个平面去切这个球面，可以得到一个圆的切面，当这个切面经

过球心时，我们称这个圆为大圆，不过球心的平面切出的圆则称为小圆，对于大圆，我们作与其平

面垂直且过球心的直线，这条直线会与球面交于两点，这两个点称为大圆的极，与平面上的圆类似，

不完整的大圆称为大圆弧

图 3.4: 大圆与小圆

接下来我们定义：在球面上任取三个不在同一个大圆上的三个点，用三个大圆弧将这三个点连

接起来所张成的图形称为球面三角形，类似于平面三角形，我们也将三个点称为球面三角形的顶

点，将三条大圆弧称为球面三角形的边

接下来我们给出球面三角上角的大小的定义与 “边长” 的定义：首先我们看球面三角顶点处的

角，即下图中的 ∠A，这实际上是两个大圆弧所张成的角，对于这样的角我们称其为球面角，球面

https://zhuanlan.zhihu.com/p/676424073
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图 3.5: 球面三角形

角的大小是两条大圆弧所在的平面所张成的二面角的大小，在下图中等价于 ∠B′OC ′；接下来我们

来看球面三角的 “边长”，我们注意到，大圆弧的长度实际直接等价于半径乘上其在球心处张成的

角度，在下图中可以表示为 ∠a = ∠BOC，因此在实际计算中，我们用角度代替边长，并直接用边
的符号来表示，即 a = ∠a；最后我们来看球面三角的 “面积”，类似的，我们可以用立体角来表示

（立体角的概念适用于任意空间曲面），立体角 Ω =
S

R2
，但是我们发现无论是 Ω 还是 S 我们好像

都无法迅速的求出，在这里不加证明的直接给出公式 Ω = A + B + C − π。请注意，这个公式有

多种方法可以得出，可以参考 FA 上的解法，另外该公式的本质为高斯-博内定理（Gauss–Bonnet

theorem），感兴趣的同学可以参考微分几何的相关教材，这部分内容在数理提纲中也有涉及。

图 3.6: 球面上的角
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在这里补充极三角形的概念与相关性质，但这部分内容基本不做考察，所以简略叙述。设球

面三角形 ABC 各边 a, b, c 的极分别为 A′, B′, C ′，并设弧 AA′, BB′, CC ′ 都小于 90°，则由通过

A′, B′, C ′ 的大圆弧构成的球面三角形 A′B′C ′ 叫做原球面三角形的极三角形。极三角形和原三角形

之间有两条定理，分别是：

1. 如果一球面三角形为另一球面三角形的极三角形，则另一球面三角形也为这一球面三角形的

极三角形；

2. 极三角形的边和原三角形的对应角互补；极三角形的角和原三角形的对应边互补。

最后不加证明的给出球面三角形的部分性质，这些性质有些与平面三角形类似，感兴趣的同学

可以自行证明。

1. 球面三角形两边之和大于第三边

2. 球面三角形三边之和大于 0° 而小于 360°

3. 球面三角形三角之和大于 180° 而小于 540°

4. 球面三角形中等边对等角，等角对等边

5. 球面三角形中大角对大边，大边对大角

球面三角的基本公式

这一部分的内容是推导球面三角的几个基本公式，推导方式将使用经典的几何方法与旋转坐

标法两种方法

边的余弦公式 如图所示，我们在平面 OAB 内作 AM⊥OA，在平面 OAC 内作 AN⊥OA，M,N

在平面 OBC 内，连接 MN
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由之前球面三角形 “边长”的定义，我们知道 ∠AOB = c,∠AOC = b,∠BOC = a，且 ∠MAN =

∠A（因为 AM,AN 是切线），在 △MON 中，由余弦定理有

MN2 = OM2 +ON2 − 2OM ·ON · cos a

同理，在 △AMN 中有

MN2 = AM2 + AN2 − 2AM · AN · cosA

又因为有

AM = OA tan c, AN = OA tan b, OM =
OA

cos c, ON =
OA

cos b
整理消元可得

cos a = cos b · cos c+ sin b · sin c · cosA

同理可写出其他边的公式，这个公式被称为边的余弦公式

角的余弦公式 我们作球面三角形 ABC 的极三角形 A′B′C ′，由极三角形与原三角形的关系定理

可得

a′ = π − A, b′ = π − B, c′ = π − C,A′ = π − a

将这些关系代入极三角形的边的余弦公式

cos a′ = cos b′ · cos c′ + sin b′ · sin c′ · cosA′

可以得到

cosA = − cosB · cosC + sinB · sinC · cos a

同理可写出其他角的公式，这个公式被称为角的余弦公式
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正弦公式 如图所示，作 AP⊥平面 OBC，在平面 OBC 内作 PM⊥OB,PN⊥OC，连接 AM,AN，

由普通的立体几何知识我们可以得到 AM⊥OM,AN⊥ON，进一步的我们可以得到 ∠AMP =

∠B,∠ANP = ∠C（还是由切线平行得）
由图可得

AN = OA sin b, AM = OA sin c, AP = AM sinB = AN sinC

整理可得
sin a
sinA =

sin b
sinB

(
=

sin c
sinC

)
最后一项同理，这个公式被称为正弦公式

旋转坐标法 我们知道球坐标系与空间直角坐标系之间有
x

y

z

 =


cosψ cos θ

cosψ sin θ

sinψ


在经过一定角度旋转后的球坐标系中有

x′

y′

z′

 =


cosψ′ cos θ′

cosψ′ sin θ′

sinψ′


旋转的角度理论上应该有对应三个坐标的三个分量，但我们的目的是推导出球面三角形的相

关公式，为了简便计算，我们假设旋转是以 x(x′) 为轴的，旋转角度为 χ

此时坐标间的关系将简化为
x′

y′

z′

 =


1 0 0

0 cosχ sinχ

0 − sinχ cosχ




x

y

z


而对于旋转产生的球面三角形 ABC 有

ψ = A− π

2
, θ =

π

2
− b, ψ′ =

π

2
− B, θ′ =

π

2
− a, χ = c

全部代入可得

sin b · sinA = sin a · sinB

cosB · sin a = − cosA · sin b · cos c+ cos b · sin c

cos a = sin b · sin c · cosA+ cos b · cos c

我们发现第一与第三个公式已经接触过，而第二个公式被称为第一五元素公式，可以由边的余

弦公式推出
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3.2.2 天球

天球的基本概念

天球是因为观测需要而假想出的球体，用于研究天体的位置与（视）运动

天体在天球上的位置是从天球球心出发把天体投射到天球面上所得的点

天球的半径一般取为无穷大

天球的中心可以任取，不加说明的情况下一般取观测者所在的点为中心

所有平行的方向都交于天球上的同一点（类似于射影上的无穷远点）

天球上的距离类似于球面三角形的 “边长”，用角度表示

天球上的基本点与基本圏

天顶 Z 与天底 Z’——延铅锤方向与天球相交的两点

真地平圈——以天顶（天底）为极的大圆，与视地平圈不同

北天极 P 与南天极 P’——延地球自转轴方向与天球相交的两点

天赤道——以天极为极的大圆

天子午圈——过天顶与天极的大圆

四方点 N，S，W，E——指向四个正方向

天卯酉圈——过天顶与东西点的大圆
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黄道——与地球公转轨道平面平行的大圆，黄道与天赤道的夹角被称为黄赤交角 ε，一般取为

23◦26′

二分二至点——天赤道与黄道相交的两点被称为二分点，其中黄道由天赤道以南穿向天赤道以

北的点为春分点，另一个点为秋分点，春分与秋分点间跟靠近北的中点为夏至点，另一个点为冬至

点，二分二至点都在黄道上，春分点一般用白羊座的符号表示（打不出来）

北黄极 K 与南黄极 K’——黄道大圆的极

3.2.3 天球坐标

天球坐标的定义

球面坐标与平面坐标类似，都通过基准点（线）来确定度量，球面坐标上的基准为基准圈与基

准点

对于天球上的一个点 P，过 P 与基准圈的极作大圆交基准圈于一点 N，基准点 M 到 N 的距

离为第一坐标（经度），该坐标视起算方向而取正负；过 P 作平行于基准圈的小圆，小圆与大圆间

的距离（即 PN）为第二坐标（纬度）, 该坐标同样视起算方向而取正负

地平坐标系

地平坐标系的基准圈为真地平圈，向天顶为正，但基准点历来有争议，在这份指南中，我们规

定基准点为南点，起算方向以自东向西顺时针为正，两个坐标分别为方位角 A 与高度角 h，有时

我们还会用到天顶距 z = 90◦ − h
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图 3.7: 直接拿地平坐标演示

我们注意到，北天极的高度角恰好等于当地的地理纬度 φ

地平坐标系符合人的直觉，但计算较为不便，且具有较强的 “地方性”

时角坐标系（第一赤道坐标系）

时角坐标系的基准圈为天赤道，向北天极为正，基准点为天子午圈与天赤道相交的上点 Q，起

算方向以自东向西顺时针为正，两坐标分别为时角 t 与赤纬 δ

时角坐标系中的时角一般用时间的方式来表示，其范围为 −12h ∼ +12h, 天体上中天时时角

t = 0h，而下中天时为 t = ±12h

我们注意到，赤纬足够大的天体即使下中天也在地平线上，而赤纬足够小的天体即使上中天也

在地平线下，这两部分天体分别位于恒显天区与恒隐天区，其中恒显天区 δ ≥ 90◦ − φ，恒隐天区

δ ≤ φ− 90◦

时角坐标系突出了 “时间性”，但并不能表示出天体的绝对位置

赤道坐标系（第二赤道坐标系）

赤道坐标系与时角坐标系的基准圈及方向一致，但是基准点取为相对稳定的春分点，起算方向

以自西向东逆时针为正，两坐标分别为赤经 α 与赤纬 δ

赤经同样用时间的方式来表示，但范围为 0h ∼ 24h

在这里我们定义一种新的时间计量方式：恒星时 s（这不是之前定义的恒星 “时”），s = 春分
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图 3.8: （一、二）赤道坐标系

点的时角，同样 s =此时上中天的天体的赤纬。由恒星时的定义我们发现，同纬度地区在同一恒星

时下看到的天空应当是一致的。

黄道坐标系

黄道坐标系与赤道坐标系基本一致，只是基准圈改为黄道，两坐标分别为黄经 λ与黄纬 β，在

此不做赘述

一些补充

我们注意到，在赤道坐标系一节中春分点的描述是 “相对稳定”，这是因为由于物理上的原因

（在之后的4.1轨道力学部分我们会做一些定量的计算），地球的公转轨道存在进动，这种进动导致

了回归年与恒星年并不等长，也导致我们观测到的春分点实际会沿着黄道向西移动，这意味着北天

极也会绕着北黄极以黄赤交角为半径旋转。进动的周期约为 25700年，平均下来春分点每年会移动

50.3′′，这种移动导致的天体位置变化称为岁差，岁差导致我们与古代观测到的星空并不一致，因此

在制定星图时需要标注纪元（如 J2000.0 等）

实际上，以上的岁差只是一种岁差（日月岁差），其他行星对地球的摄动会引起行星岁差，这

导致黄极也不是不变的，但这里不做阐述

除了进动，地球自转过程中还存在章动，这是一种微小的扰动，与地球本身有关，章动导致北

天极并不完全沿着岁差圈绕北黄极移动，而是有一个小的绕转，绕转中心称为平天极，其沿着岁差
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圈运动，而地球自转轴指向的位置为真天极。章动是多种扰动的叠加，其中最明显的称为主章动，

其轨迹近似为椭圆，周期约为 18.3 年。

不同坐标系的转换

这部分内容直接给出公式，所有公式都可以由球面三角推导，所有记号参照前文

1.

sinh · cos δ = sinA · cos a

cosh · cos δ = cosA · cos a · sinφ+ sin a · cosφ

sin δ = − cosA · cos a · cosφ+ sin a · sinφ

2.

sinλ · cos β = sin δ · sin ε+ cos δ · cos ε · sinα

cosλ · cos β = cos δ · cosα

sin β = sin δ · cos ε− cos δ · sin ε · sinα
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3.3 行星

行星是我们最熟悉的天体，这一部分的内容主要基于太阳系内的行星，但得出的结论也可用于

其他行星系统

3.3.1 行星的基本概念

国际天文学联合会（IAU）在布拉格举办的第 26届大会于 2006年 8月 24日通过了关于太阳

系中行星以及其他天体的定义的决议，原文（The Final IAU Resolution on the definition of ”planet”

ready for voting | Press Releases | IAU）包括

RESOLUTION 5A

The IAU therefore resolves that planets and other bodies in our Solar System, except satellites,be

defined into three distinct categories in the following way:

(1) A ”planet”1 is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass

for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly

round) shape, and (c) has cleared the neighbourhood around its orbit.

(2) A ”dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient

mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium

(nearly round) shape2, (c) has not cleared the neighbourhood around its orbit, and (d) is not a

satellite.

(3) All other objects3, except satellites, orbiting the Sun shall be referred to collectively as

”Small Solar System Bodies”.

1 The eight planets are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

2 An IAU process will be established to assign borderline objects into either dwarf planet and other

categories.

3 These currently include most of the Solar System asteroids, most Trans-Neptunian Objects (TNOs),

comets, and other small bodies.

这部分定义只限于太阳系，现阶段我们认为的行星定义的第一条可扩充为 “围绕恒星运转的天

体”

对于地球月球及其他行星的基本参数及相关内容应当属于常识，在这里不做赘述

3.3.2 开普勒行星三定律

高中物理已经介绍了开普勒三定律的内容，物理考试也已经有了第三定律的相关计算，在基础

部分这些内容已经足够，因此在这里只做简单介绍与一定的拔高，物理的计算将在4.1轨道力学部

分介绍

https://zhuanlan.zhihu.com/p/677605539
https://www.iau.org/news/pressreleases/detail/iau0602/
https://www.iau.org/news/pressreleases/detail/iau0602/
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开普勒第一定律

“行星运动的轨道是椭圆，太阳位于椭圆的一个焦点上”

这个定律可以将行星扩充为任意与中心天体相比质量非常小的天体，将椭圆扩充为圆锥曲线，

前一个扩充很好理解，后一个扩充将在轨道力学部分介绍

根据高中对圆锥曲线的学习，我们知道（不知道的请自行看书）：离心率 e 决定了圆锥曲线的

形状，而半长轴 a（在抛物线中为焦准距 p）决定了圆锥曲线的大小；圆锥曲线有多种定义方式与

表示方式，鉴于中心天体位于焦点且近似固定不动的特点，我们一般采用极坐标的方式来表示行星

的轨道。圆锥曲线的极坐标形式为

ρ =
ep

1− ecos θ

其中 p 是焦准距，主轴延长轴方向

这种表示方式在很多时候能减少计算量，相比标准形式具有更好的泛用性

开普勒第二定律

“以太阳为坐标原点的行星向径在相等的时间内扫过相等的面积”

这个定律本质是有心力场中的角动量守恒，在这里补充一些物理基础

在高中我们学习了两个向量的内积（即点乘），同样的，我们可以在两个张量之间定义外积 C =

A⊗B，当两个张量都为向量时，外积可被简化为C = A×B，这时我们称C 是A与B的叉乘，其中

|C| = |A| |B| sin θ，方向由右手螺旋定则确定。对于简单的三维向量A = (x1, y1, z1) ,B=(x2, y2, z2)，

其叉乘可以表示为 C =

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣∣
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接下来我们定义一个物理量——角动量 L = r×p，其中 r 是参考点到某一质点的位置矢量，p

是该质点的动量，根据之前叉乘的定义，我们发现开普勒第二定律中定义的（单位时间内扫过的）

面积恰好是该行星角动量模值与其质量的商的一半（将这块面积看作三角形）。接下来我们将 L 对

时间求导，
dL

dt
=
dr

dt
× p+r × dp

dt
，在经典牛顿力学中，p = mv,F=

dp

dt
，因此右侧两项都由于方

向相同而为 0，即只受到有心力的物体角动量守恒，这是开普勒第二定律的物理本质

结合第一定律中的极坐标形式，我们可以建立起完整的面积—时间对应关系，并通过积分来解

决一些基础方法较难解决的问题

开普勒第三定律

“不同行星在其轨道上公转周期的平方与轨道半长径的立方成正比”

在高中阶段的学习中我们知道
a3

T 2
= C，当周期以年做单位，距离以天文单位做单位时 C = 1，

之后我们又利用圆轨道推导并外推出了 C =
GM

4π2
，在中心天体质量远大于行星时，这样的计算是

没有问题的，但当二者质量相差不大（例如双星）的情况下，我们需要做一些修正

对于一般的二体问题，我们应当认为两个天体是围绕着其共同质心旋转的，观测到的 a =

a1 + a2，且 m1a1 = m2a2，所以我们得到 a1 =
m2a

m1 +m2

, a2 =
m1a

m1 +m2

考虑到现在我们还不知道一般椭圆轨道下的开三的推导，这里先暂时用圆轨道替代，即 r1 =
m2r

m1 +m2

, F =
Gm1m2

r2
，运用向心力公式并合理外推可以得到

C =
G (m1 +m2)

4π2

即原公式中的 M 应当是两天体的质量和

另外我们可以引入折合质量 µ =
m1m2

m1 +m2

，其等价于假设某一个质点不动时另一个质点的质

量，利用折合质量也可推出开普勒第三定律的修正形式
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图 3.9: 双星轨道

3.3.3 潮汐与引潮力

引潮力导致的潮汐现象

在之前的开普勒三大定律中，我们通常将行星视为质点，但行星应当是近球形的，这种形状会

导致行星两侧受到的引力不同，在天文上将这种引力的差异称为引潮力

如图，对于接近另一天体的一侧来说，a1 =
GM

(d− r)2
，一般我们认为 d≫ r，所以

a1 =
GM

d2
(1− r/d)−2 =

GM

d2
+

2GMr

d3
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同理远离天体一侧的

a2 =
GM

d2
− 2GMr

d3

而中心处 a0 =
GM

d2

引潮力的计算式即为

∆a1 = ∆a2 = ∆a =
2GMr

d3

将数据代入后我们发现，对于地球来说，月球产生的引潮力比太阳更大，两者比值约为 2.18，

因此潮汐的周期与月球的关系更紧密

太阳对潮汐的影响主要体现在大潮与小潮，在朔与望时，太阳与月球的引潮力叠加在同一方向

上，潮水涨落最大，称为大潮；在上弦与下弦时，太阳与月亮的引潮力相互垂直，潮水涨落最小，

称为小潮

引潮力通过作用于海水引起的潮汐现象同时也通过摩擦降低了地球的自转速度，相应的，地球

对月球的引潮力通过固体扭矩降低了月球的自转速度，最终使得月球的自转与公转速度相同，这种

现象称为潮汐锁定。

对于离心率较大的天体（如水星），其受到的引潮力影响较弱，此时自转与公转的比值为确定

的常数，这种现象称为自转轨道共振

洛希极限

我们注意到，引潮力的大小随着两天体距离的接近呈三次关系递增，这表明存在一个极限距离

使得天体能够保持自身形态不发生变形，这个极限距离被称为洛希极限，小于这个极限的天体会被

引潮力撕碎

接下来我们考虑一种最简单的情况，这种情况下天体表面一物体受到天体自身的引力与其受

到的引潮力相等
Gm

r2
=

2GMr

d3

d = r (2M/m)1/3

用密度表示

d = R (2ρM/ρm)
1/3 = 1.26R (ρM/ρm)

1/3

这个极限距离称为刚体洛希极限，这种情况认为天体本身的任何部分都不会发生形变，即认为

天体是完美刚体

一般的天体都会因为受力而发生形变，这种形变导致天体被拉长，进一步导致引潮力的增大，

这种情况下的洛希极限会比刚体洛希极限更大，公式前的系数一般可取为 2.44，这样的极限距离被

称为流体洛希极限
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3.3.4 行星际运动

三种宇宙速度

在课内我们已经了解了三种宇宙速度，分别是绕转速度

v1 =
√
gR =

√
GM

R
= 7.9km/s

逃逸速度

v2 =
√

2gR =

√
2GM

R
= 11.2km/s

以及地球处的太阳系逃逸速度

v3 =

√
v22 +

[(√
2− 1

)
vearth

]2
= 16.3km/s

活力公式

对于简单的只受引力约束的二体系统，整个系统的机械能应当是守恒的，接下来我们以沿椭圆

轨道绕转的行星为例来讨论这个机械能的大小

首先我们引入引力势，类似于电势，我们取无穷远处为零势能面，那么引力势的大小为 U =

−GMm

r
，动能则是经典的 K =

1

2
mv2

我们取轨道的远日点，这一点处的 r = a (1 + e)，利用开普勒第三定律得出

T = 2π

√
a3

GM

对于椭圆，其面积为 S = πab = πa2
√
1− e2，再利用开普勒第二定律得出

v =
2S

Tr
=

√
GM (1− e)

a (1 + e)

全部代入即得机械能表达式

E = U +K = −GMm

2a

这个公式在轨道为抛物线时为 0（a→ ∞），在轨道为双曲线时为正（a 取负）

我们注意到，机械能只与 a 有关，这驱使我们用另一种方法来表示速度

v2 =
2K

m
= GM

(
2

r
− 1

a

)
这个公式被称为活力公式，a 的取值与机械能类似，当两天体质量相差不大时 M = m1 +m2

活力公式给出了速度与距离的关系，能极大的简便计算
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行星际飞行器与拉格朗日点

对于飞行器，其质量一般认为是可忽略的

在行星际飞行中，我们一般采用一种特殊的椭圆轨道，这种轨道相比采取第三宇宙速度发射能

够节约很多燃料，这种轨道被称为霍曼转移轨道，又称双切轨道，在两行星轨道接近正圆时，其半

长径等于两行星轨道半径之和的一半

在飞行器到达目标行星（也可以是地球）附近时，其受到的引力同时来自太阳与行星，为了保

证飞行器的稳定，应当考虑这种限制性三体问题下的稳定解，这些定解所确定的点被称为拉格朗日

点

拉格朗日点共有五个，分别用 L1 ∼ L5 表示
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如图所示，太阳与行星绕共同质心 O 旋转，在拉格朗日点上的卫星的绕转周期与行星相同，

L1 ∼ L3 点较好理解，可以用受力分析来解决，而 L4, L5 点位于以太阳和行星为顶点的正三角形的

另一个顶点上，这两个位置可以用矢量合成的平行四边形法则来理解

拉格朗日点将在4.1轨道力学部分详细讨论

另外，对于地月系统，太阳的引力作用带来的影响可以忽略，因此也存在拉格朗日点

地球卫星

看完行星际卫星，我们回到地球卫星。课内我们学习了地球同步轨道卫星，在这个轨道上的卫

星绕转周期与地球自转周期相同，距地高度约 35800km

除了地球同步卫星，还有一种太阳同步卫星，这种卫星会在每天的同一时刻经过某一地区的上

空，因此其轨道是倾斜的，轨道平面随着地球公转而旋转

卫星的发射

当前情况下我们一般采用火箭的方式发射卫星，接下来我们来探讨火箭的发射

火箭采用连续喷射气体的方式来获得动力，我们可以将其视为连续变质量物体的运动

首先我们写出动量守恒方程

mv = (m− dm) (v + dv)− dm (ω − v)

其中 ω 是喷出的气体相对火箭的速度，这一速度通常由发动机的性能决定，在运动过程中可

以视为不变量。舍去二阶小量得

ωdm = mdv

移项，两边积分，代入初值条件得

v = ω ln m0

m1



第三章 天文基础知识 34

这个公式称为齐奥尔科夫斯基公式，这告诉我们采取分级火箭的方式能够达到更大的最终速

度

若考虑相对论效应，该公式可以修改为

m1

m0

=

(
1− β

1 + β

)c/2ω

这个公式称为阿克莱公式，推导可参考《难集》相对论部分，修正主要在质量与速度合成

3.3.5 日食与月食

在爱好者阶段，我们已经知道日食有全食、环食与偏食，而月食只有全食与偏食，但这种认识

是不够的，这一部分会完整的介绍日月食的相关内容

日月食的成因

日食与月食成因类似，都是由于某一天体进入另一天体的影子部分，导致部分或整个视圆面的

亮度下降

一个物体在一有限大光源下有两种影子，分别是本影与半影，两光线交点在后产生的为本影，

在前产生的为半影，在本影的交点之后的为伪本影。对于日食而言，观察者进入月球本影看到的是

全食，进入半影看到的是偏食，进入伪本影看到的是环食；而对于月食，月球完全进入本影时看到

的是全食，部分进入本影时看到的是偏食，而进入半影时看到的是半影月食，由于地球的半影比本

影大很多，半影月食发生的频率很高，因此一般不将其归入月食预报中。
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如果我们将月球的轨道视为正圆，半径取为月球的平均距离 384400km，运用简单的平面几何，

我们会发现月球的本影根本到达不了地球表面，因此在计算日食时月球必须采取椭圆轨道；另外，

由于地球表面本身具有弧度，因此可能会出现观察者在日食过程中穿过本影交点的情况，此时可以

在一段时间内连续观测到环食与全食，这种情况称为全环食

日月食的过程

日月食发生时一般可以分为五个阶段

两圆面第一次外切时称为初亏，第一次内切时称为食既（环食始），两圆面中心距离最近时称

为食甚，第二次内切时称为生光（环食终），第二次外切时称为复原，偏食只有 135 三个阶段。

我们定义一个新的量——食分，用来衡量食的程度。食分视不同食而有不同定义，如下图所示，

第一种情况对应月食，食分是月球进入本影的深度与月球直径的比值（半影月食同理）
D

d
，第二种

情况对应日全食与日环食，食分是两者半径的比值
d1
d2
，第三种情况是日偏食，与月食类似也是

D

d

半影月食不易被观察，只有食分大于 0.7 时人眼才能分辨其亮度变化

日月食的规律

根据成因，日食应当在朔时发生，而月食应当在望时发生，但并不是每个朔望月都会有日月食。

我们将月球的公转轨道投影到天球上，得到白道，白道与黄道并不重合，而是有一个小的夹角，称
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为黄白交角，一般取 5◦09′，这个值比太阳与月亮的视半径大得多，因此只有两者都在交点附近时

才会发生日月食。

我们将月球连续两次通过白道与黄道的同一个交点的间隔称为一交点月，其长度为 27.212220

天；在时间与历法一节中，我们知道一朔望月的长度为 29.530588 天，再对两者取最小公倍数，我

们发现 242 个交点月与 223 个朔望月的时间基本相等，在天文上取这个值为 6585.32 天，并将其称

为沙罗周期

沙罗周期刻画了日月食的整体周期，每过一个沙罗周期，日月食就会以相似的规律出现，而对

于特定地点，每过三个沙罗周期就会在类似时间看到类似的日月食

3.3.6 行星视运动

考虑完月球引起的日月食后，我们来考虑其他行星的视运动

地内行星

地内行星在运动过程中有 4 个重要点，分别是 1 下合，2 西大距，3 上合，4 东大距

对于地内行星，东西大距是观测的最好时机

地内行星有特殊的运动——凌日，由于行星轨道本身存在倾角，凌日现象比较罕见：水星凌日

平均每 100 年发生 13 次，只在 5 月与 11 月发生，本世纪的下一次发生在 2032 年 11 月 13 日；金

星凌日按照 8—105 年的规律发生，本世纪已于 2004 年与 2012 年发生，下一次将在 2117 年发生
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地外行星

地外行星在运动过程中也有 4 个重要点，分别是 1 冲，2 西方照，3 合，4 东方照

对于地外行星，冲是观测的最好时机，由于行星轨道都是椭圆，冲时也会有距离的远近，在

近距离发生冲时为大冲，远距离时则为小冲：火星大冲按照 15—17 年的规律发生，上一次发生在

2018 年 7 月 27 日，下一次发生在 2035 年 9 月 16 日。

地外行星相比地内行星没有什么特殊的运动，两者都存在逆行，但对于地外行星，逆行只在冲

附近出现，且持续时间较长，因此我们接下来讨论地外行星的逆行
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逆行的原因在于地外行星的绕转线速度小于地球，在冲附近两者的速度方向一致，使得地球上

的观察者由于地球自身更快的速度而误认为地外行星在向后运动，这类似于两辆车并排行驶时的

错觉

从这个原因出发我们就可以推到逆行的时间。如图，我们将两轨道都近似成圆，逆行开始与结

束对应 1 点与 3 点，此时两星的绕转线速度在视线方向上的切向分量相等，在观察者看来地外行

星处于留的状态，“荧惑守心” 指的就是这一时间。

我们设地球的轨道半径与角速度为 R1, ω1，地外行星为 R2, ω2

经过平面几何的运算后得到 1 → 2 与 2 → 3 的时间为（推导过程从略）

t =
arccos ω1R2

1+ω2R2
2

(ω1+ω2)R1R2

ω1 − ω2

总逆行时长

T = 2t =
2 arccos ω1R2

1+ω2R2
2

(ω1+ω2)R1R2

ω1 − ω2

行星的会合周期

我们将行星连续两次通过其轨道上的重要点的间隔称为这颗行星的会合周期

我们假设内外行星都沿圆轨道运行，那么会合可以等价于追及，其速度为

ω = ωin − ωout

将角速度改写为周期即得到会合周期

1

t
=

1

Tin
− 1

Tout
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会合周期可以用于计算下一次冲或者合的时间，当两行星绕转方向不同时需要将公式中间的

减号改为加号

通过计算我们发现木星的会合周期为 399天，恰好比一年多十二分之一，也就是说木星每一年

会在黄道上移动一个 “宫” 的距离，因此我们也称木星为 “岁星”

会合周期的思路同样可用于恒星日与平太阳日及朔望月与恒星月的转换

3.3.7 关于其他小天体

这一部分内容更多的偏向于科普，可以参考教材，重点关注彗星与小行星
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3.4 恒星

恒星是我们除行星（及其他小天体）外最熟悉的一类天体。恒星相关的内容涉及领域众多，作

为基础部分难以面面俱到，在这一部分只涉及重点考察的内容

3.4.1 恒星的基础概念

恒星并不像行星那样有易混淆的特点，也没有特别严格的定义，我们一般把由引力作用束缚形

成的球型发光等离子体称为恒星。注意，这个定义是广义的，其同时也包括白矮星、中子星等恒星

演化末期所形成的天体，在我们讨论恒星时一般并不包括这些特殊天体

人类对恒星的认识起源于太阳，在描述其他恒星时往往也会以太阳作为单位，如太阳质量M⊙ =

1.9891× 1030kg，太阳光度 L⊙ = 3.827× 1026W，太阳半径 R⊙ = 6.96× 105km 等

在基础部分需要对恒星的基本参数有数量级上的概念

1. 多数恒星的寿命在 10 亿至 100 亿年之间，而大质量恒星的平均寿命在百万年量级

2. 大多数恒星的主要组成元素为氢与氦（占 98% 以上），两者之比约为 3:1，在天文上将除了氢

与氦的其他元素统称为金属元素，其占比称为金属丰度

3. 一般来说，我们认为恒星质量的下限为 0.07M⊙，而上限在 150M⊙ 左右

4. 恒星的表面温度最高可达 50000K 以上，而最低则在 3000K 以下

3.4.2 恒星的光度

关于辐射

辐射的严格理论将在4.2辐射理论部分介绍

这一小节将会涉及一些易混淆的名词与概念，在实际运用时请选择最适合自己的名词，另外也

需要重点关注这些量的量纲

在天文学中，光度（luminosity）是物体每单位时间内辐射出的总能量，即物体表面的辐射通

量，用 L 表示，光度的量纲与功率相同，单位一般采用 W

辐射通量是辐射能流密度对给定表面的积分，在计算光度时，可以认为是光通量（严格的说，

这样的等价是不严谨的，因为可见光波段并没有集中所有的能量，我们一般将包含整个波段能量的

光度称为热光度，在不引起混淆的情况下也可简称为光度）

在物理中，与光通量对应的量称为发光强度（luminous intensity），也可简称为光强，其表

征了单位立体角的光通量，单位为 cd 坎德拉，坎德拉是发出 540× 1012Hz 频率的光的单色辐射源

在给定方向上的发光强度，该方向上的辐射强度为 1/683 W/sr，sr 是立体角单位，是无量纲数，

光通量的单位为 lm 流明

https://zhuanlan.zhihu.com/p/678924907
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光度描述的是发光体的整体特征，对于观察者来说我们需要一个特定的量来衡量亮度的大小，

在天文中，我们将单位面积上接受到的总能量称为亮度（luminance），用 E 表示，其单位一般取

为 W/m2；在物理中，亮度指的是光源在给定方向上单位面积单位立体角内所发出的光通量，单位

是 nit 尼特

对于一个简单的点光源或者均匀辐射的光源，我们假设辐射在空间中传播没有损失，那么在距

离为 r 处的整个球面上的辐射通量与其光度相等为 L，在这个距离上单位面积的辐射通量即亮度

为

E =
L

4πr2

对于一个理想黑体，我们知道其表面单位面积的辐射通量为

E = σT 4

其中 σ = 5.67× 10−8W/ (m2 ·K4) 是斯特藩-玻尔兹曼常数；而对于恒星，我们可以将其近似

为球状黑体，那么其光度就可表示为

L = 4πR2E = 4πR2σT 4

视星等

很早以前人们就建立了星等系统，用来定性的描述恒星的亮度。现代天文学同样采用这套体系

来描述天体的亮度，我们规定：星等约小表示天体越亮，星等每相差 5 等，亮度就相差 100 倍，即

相邻的星等之间亮度差 5
√
100 = 2.512 倍。根据上述规定，我们发现星等与亮度的关系为

m = −2.5 lgE + C
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其中 C 是定标常数，以前通过取大气层外织女星的亮度为 0 等来定标，现在则在各波段取特

定的流量值作为定标星等

在一般的计算中，我们往往通过比较的方式来确定星等，即

m2 −m1 = −2.5 lg E2

E1

这个公式称为普森公式，我们将上述这种与亮度相关联的星等称为视星等

在当前阶段，我们一般采用 UBV 测光系统，其在三个波段测量天体的流量值，分别是 U（紫

外 365nm），B（蓝 445nm）和 V（绿 550nm），其中 V 波段与人眼的敏感波长接近，一般的视星

等也取 V 波段的测光星等

不同波段的测光星等差称为色值数，用 CI 表示，如（B-V）与（U-B），色值数间接给出了天

体的颜色

在地球上测量视星等时，不可避免的会受到大气层的影响，这种影响称为大气消光，因此实际

测得的星等是一个随天顶距而变化的值

m (z) = m+ kF (z)

其中 k 是随波长而变化的消光常量，我们一般认为大气的消光作用与光线通过的大气厚度成

正比，对于天顶距较小的恒星，可以认为大气层是均匀厚度的水平层，因此

F (z) ∼ 1

cos z

距离模数公式

我们知道，亮度与观察者到光源的距离有关，因此视星等并不能反应出恒星的绝对亮度，因此

我们制定了与光度相关联的星等——绝对星等

绝对星等本来应当定义为

M ∼ −2.5 lgL

但是为了统一标准，我们实际将恒星在 10pc（pc 是长度单位秒差距）处测出的视星等作为绝

对星等，因此

M −m = 5− 5 lg r

其中 r 以 pc 为单位，这个公式称为距离模数公式

正如前文所述，在考虑光度时需要注意是否包含全波段的能量，因此我们将包含全波段的绝对

星等称为绝对热星等，太阳绝对星等为 4.80m，而绝对热星等为 4.75m

我们将绝对热星等与绝对星等的差称为热改正 BC =Mbol−MV ≤ 0
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面亮度与面星等

之前的星等主要针对的是点状的天体，其亮度集中在一个方向上，而对于面状的天体如星系、

星云等，我们需要另一种方式来表示其亮度

我们在之前的球面三角中提到过，球面上的面积等价于其在球心处所张成的立体角，立体角在

SI 单位制中采用球面度 sr，而在一般计算中也会使用平方度，我们知道一弧度等于 180

π
度，同样

的一球面度等于

(
180

π

)2

平方度，我们也可定义平方角分与平方角秒

对于一个给定的立体角 Ω，其在 r 处所对应的面积 S = Ωr2，这里的天体在单位面积上的光度

为 LS，则总光度 L = LS · S，而对应的总亮度即为

E =
L

4πr2
=
LS · Ω
4π

∼ LS

因此单位立体角上的亮度只与对应区域天体的辐射能流密度有关，我们将这个亮度称为面亮

度，对应的星等则为面星等，由于面状天体的视角并不大，面星等的单位一般取星等/平方角秒

面亮度与距离无关，能够直接反应面状天体的绝对亮度，与绝对星等类似

反射产生的亮度

我们知道，行星是不可自行发光的，其亮度来自对太阳光的反射，接下来我们来讨论由于反射

而产生的亮度
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相位 我们将行星向阳面法向与视线方向的夹角称为相位，用 α 表示；通过简单的立体几何知识，

我们知道圆在倾斜光线下的投影为椭圆，半短轴为 R cosα，整个亮面占圆面积的 1 + cosα
2

对于地内行星（或月球），其相位变化很明显，在计算亮度时需要考虑相位带来的影响；而对

于地外行星，尤其是距离较远的地外行星，其相位变化很小，在粗略计算时可以略去相位带来的影

响

我们将由于相位而导致的亮度变化的函数称为相位因子 Φ(α)

反射产生的亮度与星等 对于 r 处的行星，其接收到（要反射）的亮度为

E =
L⊙

4πr2

我们知道，对于半球面而言，其接收到的总能量等价于横截面接收到的能量（因为光通量是能

流密度对面积的积分 L =
∫
E · dS），所以入射光度

Lin = πR2E =
L⊙R

2

4r2

我们定义反照率是出射光度与入射光度的比值 A =
Lout

Lin

，则出射光度

Lout = ALin = AL⊙R
24r2

对于地球上的观察者，接收到的亮度为

F =
Lout

4πd2

这是不考虑相位的情况，若考虑相位因子带来的影响，则要修正为

F = CΦ(α)
Lout

4πd2

其中 C 是归一化常数

我们先尝试给出一个相位因子

Φ(α) =
1 + cosα

2

其认为相位导致的亮度变化是由于发光面积的减小引起的，在这种相位因子下，我们先不加证

明的给出 C = 4（下一部分会有阐述），此时可以得出

F = (1 + cosα) Lout

2πd2
= (1 + cosα) AL⊙R

2

8πd2r2

类似这样的公式给出了反射的亮度，因此我们测得的星等

m ∼ −2.5 lgF
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关于反照率 反照率是本节最容易引起疑惑的部分，很多教材对这部分都不做解释，或解释有误

（点名 FA），在这里会做一些明确的阐述

首先我们先看上一部分提到的归一化常数，因为∫
F · dS = Lout

在地球上的观察者处

dS = d2 · dΩ

而对于反射光的球面，写出球坐标下的微元

dΩ = sinαdαdφ

整理上述式子并积分得（α, φ 的积分上限都取为 π，因为我们是对可观测的半球做积分，FA

在这里对 φ 的积分限是错误的）

C =
4∫ π

0

Φ (α) sinαdα

接下来我们定义一个量

q =

∫ π

0

Φ (α) sinαdα

此时 C =
4

q
，这个 q 称为相位积分

于是反照率可以表示为

A = pq

这里的 p =
CA

4
称为几何反照率，几何反照率拥有其自身的物理意义

我们发现反照率中已包含了相位积分，因此这种反照率称为球面反照率

接下来我们来探究相位因子的表示，这实际与反射的类型有关，对于行星，其一般遵循漫反射

的原则，因此我们用朗伯反射面的模型对其拟合，朗伯面的反射强度与入射光的方向无关，而与反

射光线关于法线的夹角的余弦成正比（请注意区分强度与亮度）

在一般的教材中，我们会直接将行星视作一整个朗伯面，那么其相位因子很显然为

Φ(α) =

cosα, if 0 ≤ α ≤ π/2,

0, otherwise.

在这种假设下，之前对 φ 的积分上限需要取为 2π，因为在这种情况下即使背对我们的面也有

完整的辐射，从这个相位因子可以导出

q =
1

2
, C = 4

朗伯面能够反射所有光线，其反照率 A = 1
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对于相位为 0 处，其相位因子必定为 1，计算朗伯反射面下的亮度得

FL =
1

πd2
Lin

对比得

p =
F

FL

即几何反照率是 0相位下实际亮度与朗伯亮度的比值，由于相位积分的存在，几何反照率一般

会高于球面反照率

截至目前，我们采用的算法与 FA 上基本一致，但我们注意到一旦相位超过 π

2
，这种相位因子

给出的亮度会直接为 0，这与我们日常生活中观察到的现象不符，其本质是因为这种将行星表面看

作一整个朗伯面的做法与行星自身的球面属性相冲突，这种做法有原则性的错误，接下来将会给出

合理的做法

由朗伯面的性质我们知道

I = I0 cos θ

而在观察者视线方向，其面积元

dS ′ = dS cos θ

因此
I

dS ′ =
I0
dS

即朗伯面反射的亮度与观察者的视线方向无关

我们注意到，在计算观察者方向上的亮度时采用的面积元是 dS ′，即投影产生的面积元，而基

于朗伯面将所有光线反射的特性，每一个投影面积元上的亮度应当是相等的，因此我们的确可以认

为（视）发光面积的减小导致了整体亮度的下降，这与上一节中提到的相位因子 Φ (α) =
1 + cosα

2
的原理相同，这才是朗伯面对应的相位因子
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我们发现，朗伯面的 A = p = q = 1，这说明朗伯面是一种理想情况

再次提醒，在不加说明的情况下，一般计算中给出的反照率都是球面反照率，而在非理想情况

下（q < 1），也可以用上述的相位因子进行估算

3.4.3 恒星的演化

恒星的演化是非常复杂的过程，作为基础部分这里只做引入与介绍，详细内容将在4.3恒星物

理部分介绍

光谱型

首先我们需要对恒星进行初步的分类

恒星最直观的特征是亮度与颜色，在天文上则用光度与色值数来定量描述这两个特征

而根据维恩位移定律 λmT = 2.90cm ·K，颜色其实在一定程度上表征了温度，而不同温度系

列的恒星具有特定的谱线数目与强度；基于光谱类型，我们将恒星分为 7 大基本型，每个基本型中

细分为 10 个次型；根据温度由高到低，这 7 种基本类型分别为 O-B-A-F-G-K-M；后来又分别在

G 型与 K 型后补充了 S、R 和 N 三种亚型，共计 100 种光谱型，这种分类方式称为哈勃分类法，

是最通用的恒星分类法

哈勃分类法基于温度，是一元分类法，也可以在其基础上加上光度形成二元分类法；光度也可

分成 7 级，由高到低分别是 I 超巨星，II 亮巨星，III 巨星，IV 亚巨星，V 主序星（矮星），VI 亚

矮星，VII 白矮星；这种分类方式称为 MK 系统，太阳的 MK 光谱型为 G2V

各光谱型的恒星代表及类型特征情参考教材，在这里不做赘述

赫罗图

我们将已知恒星按照以光谱型为横轴，以光度为纵轴的方式标记在同一张图上，得到的图像称

为赫罗图

赫罗图中色值数与绝对星等一般采取线性坐标，光度则采取对数坐标并以太阳光度为单位，光

谱型与温度相对应

赫罗图的右上角温度低光度高，说明其半径很大，这类天体是红巨星与红超巨星，相应的，左

上角的天体是蓝巨星与蓝超巨星，左下角温度高但光度很低，说明其半径很小，这类天体是白矮星

基于上文中光度与温度的关系，我们可以在赫罗图上以太阳半径为单位画出等半径线，等半径

线的方向为左上-右下

演化的整体流程

赫罗图是恒星演化的统计表示，恒星聚集的区域基本上描绘出了恒星演化的大致流程
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最早期时恒星尚未诞生，原先恒星的位置是一片星际气体，星际气体在引力的作用下逐渐收缩

成球形，演化为原恒星，原恒星在引力作用下继续收缩，消耗的引力势能转化为内能从而使核心温

度升高，温度升高到核心氢点火后，恒星正式进入演化阶段，称为主序星，原恒星与主序星之间的

阶段称为主序前星；恒星将在主序星度过很长的一段时期，主序阶段恒星在赫罗图上的位置几乎不

变，因此我们会发现图上从左上到右下有一条很长的条带，这被称为主星序；主序星阶段随着热核

反应的进行，恒星会逐渐膨胀并进入红巨星阶段（当然特别大质量的恒星会经过蓝巨星阶段），这

一阶段会抛射物质损失质量；对于小质量的恒星（M < 8M⊙），其抛射完足够质量后温度升高光度

开始下降，演化为行星状星云与白矮星；而对于大质量的恒星，热核反应迅速进行使得引力无法完

全束缚能量，恒星会发生超新星爆发抛射大量的物质，剩下的核心如果质量不大会演化为中子星，

质量很大则会演化为黑洞
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主序星阶段

主序星是恒星演化非常重要的一个阶段，这不只是因为主序阶段占据的时间很久，也因为主序

星阶段的恒星本身拥有普遍的规律

主序星阶段的恒星有两大特征：化学组分均匀与核心氢燃烧为氦，在恒星内部，氢核聚变主要

有两种机制，分别是

质子-质子（p-p）反应
1
1H +1

1 H −→2
1 H + e+ + νe

2
1H +1

1 H −→3
2 He+ γ

3
2He+

3
2 He −→4

2 He+ 211H + γ

每生成一个 He 可产生 26.73× 106eV 能量

碳氮氧（CNO）循环
12
6 C +1

1 H −→13
7 N + γ

13
7 N −→13

6 C + e+ + νe

13
6 C +1

1 H −→14
7 N + γ

14
7 N +1

1 H −→15
8 O + γ

15
8 O −→15

7 N + e+ + νe

15
7 N +1

1 H −→12
6 C +4

2 He

每生成一个 He 可产生 25.03× 106eV 能量

中低质量的恒星产能以 p-p 为主，而大质量恒星以 CNO 为主

在高中我们知道，核反应产生的能量遵循质能方程 E = ∆mc2，而这部分能量可以认为按照一

定比例转化为了辐射，即 L∆t = ηE = η∆mc2，也就是说我们可以大致认为恒星在主序阶段的寿

命 T ∼ M

L
基于统计规律，我们发现主序星的光度与质量间存在幂次关系 L ∼M b，数据表明，幂指数随

着质量的增大而减小，对于中低质量的恒星 3.5 ≤ b ≤ 4，而对于大质量恒星 b = 3，对于更大质量

的恒星 b = 1，在一般计算中我们取 b = 4（也有取 3.5），因此恒星寿命

T ∼M−3

质量越大的恒星热核反应的速度越快，寿命越短

中低质量的主序星的恒星结构基本与太阳一致，核心处进行热核反应，产生的光子携带能量向

外运动经过辐射层到达差旋层，在这一过程中光子的能量开始部分转化为等离子体的动能，在差旋

层这部分带电粒子的旋转导致了恒星磁场的产生，再外部的对流层主要由等离子体的对流运动来
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图 3.10: 质光关系

传输能量，光子则经过这部分到达恒星的外层大气；大部分主序星的外层大气与太阳类似，分为光

球层、色球层与冕层，我们也在部分恒星上观察到了黑子、米粒组织、耀斑等现象

对于大质量的恒星，核心处的高温能产生很高的温度梯度，因此核心周围是对流层，而在对流

层外，温度梯度降低但温度依旧很高，这部分环境与中低质量恒星的辐射层类似，因此大质量恒星

的外围以辐射传能为主导

巨星阶段与变星

关于巨星的演化作为基础部分不做展开，这里只介绍一些基础内容

在主序星阶段我们提到过，所有主序星的热核反应都是将氢燃烧为氦，在核心部分的氢全部转

化为氦之后，恒星开始由主序星阶段进入巨星阶段

在赫罗图上，主序星进入巨星阶段一般沿着左下-右上的方向，因此除了特别大质量的恒星，大

部分恒星进入的巨星支都是红巨星

恒星进入巨星阶段后，会燃烧氦核外的氢来提供能量，这部分能量可以提升核心的温度，使得
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氦能够燃烧生成碳，对于中低质量的恒星，这一过程并不稳定，其中会发生氦闪，随着氦的燃烧，

恒星还会继续膨胀，进入红超巨星阶段，这是巨星的最后阶段，恒星很快就会进入演化的末期；对

于高质量恒星，其并不会发生氦闪，而碳也会进一步燃烧生成氧、硅等元素，这使得恒星不同层有

不同的燃烧元素，从而形成了一种类似 “洋葱” 的多层结构；经过高中的学习，我们知道核聚变的

终点是铁（这一点并不正确，详细可参考为什么恒星只能聚变到铁，就聚变不下去了？中太空僧的

回答），而一旦生成铁峰元素，恒星就无法维持稳定，迅速进入演化末期

巨星阶段是恒星演化的不稳定阶段，部分恒星的光度会发生规律性的变化，这类恒星是变星中

的一种，称为脉动变星

脉动变星的光度变化来源于其自身的膨胀与收缩，描述变星机制的理论是爱丁顿-热瓦金理论，

作为基础部分这里不做展开，简单的说，辐射压与引力导致了径向的震荡，而电离区的不透明度变

化维持了这种震荡的稳定性

在天文中有两类经典的脉动变星需要注意，一类是以盾牌座 δ 为代表的造父变星，这类变星光

变周期长，本身光度大，光变幅度小，大都是演化晚期的红超巨星；另一类是天琴座 RR 型变星，

又称短周期造父变星，这类变星光变周期短，光变幅度大，但具有稳定的光度，且大多在球状星团

内

观测与统计表明，造父变星的绝对星等与周期间存在线性关系，这说明造父变星可以作为 “量

天尺” 来测量距离，这种关系称为周光关系，实际上，造父变星可以细分为两类，分别是

经典造父变星

M = −1.8− 1.74 lgP

室女座 W 型变星

M = −0.35− 1.75 lgP

其他种类的变星请参考教材，这里不做赘述

演化末期

前面我们已经阐述过，恒星的末路与其质量密切相关，这一部分会从基础的角度介绍恒星演化

的末期

中低质量恒星的演化 中低质量的恒星在进入红超巨星阶段会经历一段物质抛射的过程，这些抛

射的物质会逐渐演化成行星状星云弥散在空间中，剩下的核心部分在完成最后的燃烧后会在引力

的作用下收缩，直到与电子简并压平衡，此时生成的天体为白矮星

这里先浅显的补充一些物理知识，关于电子简并的详细内容与计算将在天体物理部分介绍。在

恒星内部的高压环境下，电子脱离原子核的束缚而形成自由电子气，这些电子能够占据所有的能

级，此时我们称这个状态是简并的，对应的电子气称为简并电子气；对于质量不大的白矮星，电子

https://www.zhihu.com/question/568664075
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的运动速度与光速相比可忽略，这时我们称这种气体为非相对论性简并气体，相应的另一种气体称

为相对论性简并气体；简并电子气与一般理想气体一样可以产生压力，这种压力就是电子简并压

电子简并压能够支撑起的最大质量对应白矮星的质量上限，称为钱德拉塞卡极限，一般取

Mch = 1.44M⊙

大质量恒星的演化 大质量恒星在生成铁峰元素后就无法保持稳定，进而发生超新星爆发，这一过

程迅速抛射出大量的物质，由于原先大质量产生的引力，这样的爆炸并不是没有残骸，在核心处由

于引力束缚会产生新的天体

在这种情况下，电子简并压无法抗衡引力带来的束缚作用，电子突破了泡利不相容的限制进入

到原子核内与质子融合形成中子，很显然这会形成简并中子气，对应的压力则称为中子简并压，当

中子简并压能够与引力相平衡时，产生的天体称为中子星

中子简并压能够支撑起的最大质量对应中子星的质量上限，称为奥本海默极限，基于不同的物

态方程求出的极限值并不相同，一般我们认为

Mmax = 2 ∼ 3M⊙

当中子星能够发射辐射，且发射极与自转轴方向不同时，我们将其称为脉冲星，脉冲星的自转

周期（脉冲周期）短而平稳，可以作为 “钟” 与定标星来使用

更大质量的恒星爆炸后，中子简并压也无法抗衡引力，此时核心的坍缩将无法避免的持续下

去，最终形成的天体称为黑洞，在基础部分不会对黑洞做物理上的探究

黑洞是非常致密的天体，理论上可以认为其密度是无穷大，同样黑洞没有其他鲜明的物理特

征，我们只能用角动量、带电量与质量来描述黑洞

对于一个无旋无电的黑洞，我们取逃逸速度为光速的距离

rs =
2GM

c2

很显然，小于这个距离的任何物质（信息）都无法传递到外界，我们称这个距离为史瓦西半径，

其对应的球面称为视界

注意，这里的推导都是基于牛顿力学的错误推导，在4.3恒星物理部分会基于场论推导出正确

的结果，这两个结果是相同的

关于超新星 在一般科普中我们常听到 “Ia型超新星”与 “标准烛光”，在这里对超新星做一些相对

完整的基础介绍

超新星（supernova）是对亮度变化非常大的一类天文现象的统称，一般用 SN+ 年份 + 大写

字母来表示，字母按照当年发现的顺序编排，若超过 26 颗则用小写双字母替代

超新星的分类基于光谱中的特定谱线，没有氢线的归为 I 型，有氢线的归为 II 型，光谱难以

分辨时会参考光变曲线进行分类；在大分类下则会根据特定谱线分出次型，例如有 SiII 线的归为

Ia 型，没有的则归为 Ib 型，若同时没有 He 线则归为 Ic 型，II 型则会根据光谱形状分出次型
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根据分类方式，我们可以快速的将演化末期中的超新星爆发归于 II 类，即 II 类超新星的前体

星是大质量恒星演化末期的红超巨星（SN1987A 说明也可以是蓝超巨星）

Ia型的前体星较为特殊，其来自于双星系统中的白矮星，白矮星通过吸积作用获得另一颗星的

大气，在质量达到钱德拉塞卡极限后点燃核心并迅速发生爆炸，这种情况下的引力束缚作用不强，

超新星爆发后不会留下残骸

Ia 型超新星的物理图像是清晰而明确的，这说明这类超新星的光度应当是一个稳定值（不是

确定值是因为还有多种因素作用），观测结果也表明 Ia 型超新星的光度极大值基本相同

MV = −19.13± 0.03m

这说明 Ia型超新星可以作为一种定标星，又因为其本身的高亮度，我们将其称为宇宙中的 “标

准烛光”（来源于曾经用烛光来定义光照度的单位）

3.4.4 双星系统

双星系统是最简单的多恒星系统，更复杂的多恒星系统会在下一部分介绍

双星系统是两颗恒星由于引力束缚而形成的相对稳定的系统，接下来我们会根据双星间的距

离及对应的观测手段对其进行分类

目视双星

正如其名，我们把能用肉眼或者望远镜照相观测就能分辨出的双星称为目视双星，由于观测设

备的原因，能够直接分辨的双星大都是距离较远的双星，它们的绕转周期也较长，一般都在一年以

上

另外，双星能够被直接分辨的另一个必要条件是轨道平面与视线间的夹角足够大，之后的食变

双星就是夹角过小的例子

食变双星

当轨道平面与视线方向基本重合时，两颗恒星之间就会发生掩食，于是该方向上的光度就会发

生变化，我们把这类双星系统称为食变双星

食变双星并不等同于行星的食，两颗恒星由于都会自发光，整个系统在一个周期内会有两次光

变极小值，我们根据光变幅度将其分为主极小与次极小；一般情况下的光度为 L1 + L2，次级小时

为 L1 + L2 − L2m，主极小时为 L1 + L2 − L1m（我们认为 L1 > L2, Lm 是被遮挡的光度）

随着双星间距离的靠近，恒星会发生一定的形变，光变曲线也会发生相应的变化，我们将食变

双星分为三类，分别用典型星来命名：大陵五型、天琴座 β 型与大熊座 W 型
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分光双星

当双星系统距离我们非常遥远，而其轨道平面与视线方向之间恰好有一定的角度，此时简单的

光学手法没有办法分辨，但我们可以借助光谱的方式，这种通过光谱的周期性变化来判断的系统称

为分光双星

绕转的线速度会在视线方向上产生分量，而经过高中的学习我们知道，这种速度会产生多普勒

效应，远离的速度使得光谱红移，而靠近的速度使得光谱蓝移；能够分辨出红移与蓝移周期的是单

谱分光双星，而能够发现两条光谱叠加的则是双谱分光双星

密近双星

随着双星距离的靠近，两颗星之间的引力作用不再只是改变运动状态的因素，也会开始影响恒

星的形态，甚至发生物质的交换，我们将这种物理距离十分靠近的系统称为密近双星

正如电场中的等电势面，引力场中也存在等势面，这些等势面中恰好有一个是双星各自等势面

的相接面，这是包络两颗恒星的闭合曲面，称为内临界等势面，等势面中央的节点就是双星系统的

L1 点；等势面包裹起来的双叶型结构称为洛希瓣

两颗恒星都没有填满洛希瓣的系统称为不接双星，大部分双星都是这种结构，其并没有发生物

质交换，而只是发生了形变，严格的说其并不能算是 “密近”；有一颗子星的光球与洛希瓣重合的
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系统称为半接双星，这种情况下充满洛希瓣一边的恒星气体会经由 L1 点向另一边转移；两颗子星

的光球都充满洛希瓣的系统称为相接双星，此时物质交流是相互的，双星间会形成一个共同的对流

包层

双星系统参数的测量

光学方法与光谱方法的关键点在于测量双星系统的绕转周期，这一般可以从数据或图像中直

接得出

对于目视双星，我们可以直接测量系统轨道的半长径与两子星各自绕转的半长径，基于行星部

分提到的开普勒第三定律修正式
a3

T 2
=
G (m1 +m2)

4π2

我们可以得出两子星分别的质量

对于分光双星，由于多普勒效应只与视向速度有关，因此我们计算得到的半长径其实与实际值

之间差一个轨道的倾斜因子

a = a0 sin i

其中 i 是绝对轨道平面与天球切面的夹角（轨道平面法线与视线的夹角）

当然，目视双星在测量时也需要测量轨道夹角来进行修正，在这里不做阐述
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3.5 星系

星系是构成宇宙的基本单位，由恒星、星际介质与暗物质组成，是引力约束下的复杂系统。在

基础部分，我们将定性的描述星系的大体图像

关于银河系的基本概况以及星系相关的天文学史应当属于常识/在教材中已有详细介绍，在这

部分中不再赘述

3.5.1 星系的分类

我们对星系的分类基于星系的形态，这种分类法称为哈勃分类法

左支为椭圆星系，用 E表示，这类星系没有显著的特征，整体呈卵形，我们根据星系的椭率分

出次型，几乎接近圆形的为 E0，而最扁的为 E7，E 后的数字 n = 10
a− b

a
取整数；大部分的星系

都是椭圆星系，星系群的中央一般是巨大的椭圆星系

右上支为旋涡星系（请不要写成漩涡星系），用 S 表示，根据旋臂缠绕的松紧（用旋臂与以中

心为圆心的圆的夹角来表示）分出次型，由紧到松分别为 Sa、Sb、Sc；我们发现旋臂的形状可以

用对数螺旋逼近（及上述的夹角是定值）；旋涡星系通常有一个笼罩整体的晕，称为星系晕，再外

的稀薄部分称为星系冕

右下支为棒旋星系，用 SB 表示，棒旋星系与一般的旋涡星系除了中心处有棒状结构外其余表

示与结构都相同；很多旋涡星系都有棒旋结构，包括银河系

在椭圆星系与旋涡星系之间有一类过渡天体称为透镜星系，其有类似于旋涡星系的星系盘结

构，但没有旋臂，核球内无棒的用 S0 表示，有棒的则用 SB0 表示

在这几种典型的形态之外，其余的星系被归入不规则星系，用 Irr 表示，根据颜色分出次型，

偏蓝的为 IrrI，偏红的为 IrrII

当然，这些分类都是对于常规尺寸的巨星系而言，除此之外还有 “超巨弥漫” 星系 cD 星系与

相对较小的矮星系，类似椭圆星系的矮星系用 dE 表示，类似于不规则的用 dIrr 表示

哈勃分类并不能包含所有星系，对于改进后的分类方法请参考教材，这里不做展开

https://zhuanlan.zhihu.com/p/679243845
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3.5.2 星系的基本概念

星团

在科普中我们知道，银河系的大小是由星团的距离来测定的，因此在介绍星系之前我们需要先

对星团有一些基础的认识

首先补充一个概念：我们依据恒星的年龄及金属丰度将恒星分类，这样得到的恒星集合称为星

族，年轻的、富金属的称为星族 I，年老的、贫金属的称为星族 II

星团是超过十颗恒星的由引力束缚所形成的多恒星系统，我们依据恒星的聚集密度与整体的

形态将其分为疏散星团与球状星团

疏散星团形状不规则，结构松散，但具有整体的运动特性；疏散星团大部分位于银盘面上，因

此也称为银河星团；疏散星团的大部分成员星属于星族 I；同时，成员星数较多的疏散星团平均寿

命更长，距离银心较远的疏散星团平均年龄也更长

另外，距离我们较近的疏散星团的成员星的速度方向一般可以反向延长到一个辐射点上，这样

的星团称为移动星团

球状星团的成员星呈球状分布，且数量一般都比疏散星团更多；球状星团的成员星由于相互靠

近使得其有几乎相同的自行；球状星团大都分布在银晕内，距离银心更远的则被归于星系际天体；

球状星团拥有更大的光度，我们也可以在河外星系中探测到球状星团

图 3.11: M55 的星团赫罗图

（在过去）我们一般将球状星团视为星族 II 的最简单代表，因为球状星团内的恒星的化学组成

与年龄基本一致，也几乎是在同一个时间诞生，这表明如果我们将星团内的恒星标记在同一张赫罗

图上，就能够呈现出这种恒星的演化曲线。但是近年来的测光数据表明，球状星团具有多星族特性，

成员星可以分出多条演化路径，这实际表明球状星团的成员星应当是分批诞生的
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另外还有一个容易与星团混淆的概念：在上个世纪人们发现 O 型星与 B 型星在某一个区域内

会有集群分布，这种分布有其本身的物理联系，由此产生的系统称为星协，星协并不是由引力束缚

形成的；我们把主要由 O 型星与 B 型星组成的称为 OB 星协，而主要由金牛座 T 型星与御夫座

RW 型星（这两类都是变星）组成的称为 T 星协；星协总是位于银河系的旋臂上，且可能与恒星

的发源地有关

星系的基本参数

与恒星类似，质量与光度也是星系的重要物理量，这里我们先对这两个量做一些阐述

星系的光度 在之前的恒星光度一小节中我们提到面亮度实际对应的就是光度值，因此对于星系

这样的面状天体，我们只要将面亮度对于面积积分就能得到对应的整体光度值

我们依照光度值大小将星系分为 I-V 五种分类，其中 I 最亮，V 最暗；我们发现光度级往往也

指示了其他参数，如 I 同时也是质量最大的星系，在旋涡星系中 I 对应着最规则的旋臂结构等

星系的面亮度随距离的变化可以用 ln I

I0
= −kr1/n 来表示，对于椭圆星系，n = 4, I = I0e

−kr1/4，

这个关系称为 de Vaucouleurs’ law；而对于旋涡星系，核心部分可以用椭圆星系来拟合，盘状部分

则可以用指数关系 I = I0e
−kr 来拟合（n = 0）

星系的质量 星系的质量有多种测量方式，其中利用动力学方法测得的质量称为动力学质量，这包

括两种主要方法——旋转曲线法与速度弥散法，其中旋转曲线法借助类似于绕转速度的公式

M (r) =
rv (r)2

G

计算，速度弥散法则借助位力定理进行运算，这两种方法的基础都是万有引力定律，因此动力

学质量本质上是引力质量

而类似于恒星，星系也有其对应的质光关系
M

L
= k，这个比值称为质光比，与星系的类型有

关，例如对于椭圆星系 k 可以取 20 ∼ 40，利用质光关系得到的质量称为光度质量，其表征了发光

物质所占据的质量大小

我们发现星系的动力学质量往往大于光度质量，这说明有部分物质不发出辐射，但具有引力质

量，这种物质就是常说的暗物质

星系的自转 旋转曲线法的关键在于测量星系的自转速度，测量自转速度主要基于谱线的多普勒

效应，在光学波段我们会测量特定的发射线与吸收线，而在射电波段，我们则重点关注 21cm 氢线

在这里浅显的补充一些物理知识（详见原子物理与量子力学）：我们在学习化学的时候知道洪

特定则，也就是说电子是有自旋的，同样的氢原子的原子核（质子）也有自旋，两个自旋的角动量

会发生耦合，由此产生 4 种波函数，这 4 种波函数中有 3 种是交换对称的，称为三重简并态或自

旋平行，另 1 种是交换反对称的，称为单重简并态或者自旋反平行；依据选择定则，能级跃迁应
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当发生在三重态之间，而跨越自旋的跃迁是 “禁止” 的，这种跃迁叫做禁线跃迁，对于中性氢而言，

其禁线波长就是 21cm

（简单来说，21cm 氢线是由于电子自旋改变而发出的）

我们将自转速度与距离的关系用图像画出，除去核心附近的升高部分，对于几乎没有发光天体

的部分其自转速度应当是下降的，但自转曲线在核心外依旧保持着相对平稳的趋势，这也表明在外

部有暗物质的存在

星系中的非恒星介质

这一部分主要介绍星云与星际介质

星云 星云是由气体与尘埃混合而成的类似云状的天体

在恒星演化中我们已经知道中低质量的恒星在演化末期会形成行星状星云，这个名称来源于

其在望远镜视场中呈现出像行星一样的模糊光斑，而对于大质量恒星演化末期的超新星，在完成爆

炸后除了中心的致密天体外，也会留下超新星遗迹，这种遗迹也是一种星云

除了这些演化过程中诞生的星云外，我们根据星云的光学特征将其他星云分成三大类，其中由

于遮挡背景星或者其他发光区域的气体星云称为暗星云，由于反射位于其中的恒星而发光的气体

星云称为反射星云，由于受到恒星的紫外辐射导致电离而产生辐射的气体星云称为发射星云，反

射、发射以及之前演化形成的星云统称亮星云

在亮星云中，由于热电子的碰撞与激发，也会产生禁线跃迁，如 HII 线与 OIII 线

星际介质 对于那些弥漫在整个星系中的气体与尘埃，我们将其称为星际介质，星云也是星际介质
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星际介质会在不同波段上产生不同的遮挡效果，这种作用称为星际消光，用 A 表示

m−M = 5 lg d− 5 + A

我们发现

mB −mV = (MB −MV ) + (AB − AV )

因此在有消光的情况下，色值数需要进行区分，其中绝对星等的差值是真实色值数

CIT (BV ) =MB −MV

而星际消光带来的差值则称为色余

CEBV = AB − AV

我们定义一个量

RV =
AV

AB − AV

这个值称为总选消光比，在银河系中一般取为 3.1

星际消光与波长有关，一般我们可以认为

A (λ) ∼ 1

λ

由于星际介质的散射作用，我们观察到的天体总是偏红，这种现象称为星际红化，红化的值可

以用色余来定量描述

一些补充

之前叙述的都是正常的星系，实际上还有一些特殊的星系称为活动星系

活动星系包括强射电的射电星系，正在进行剧烈活动的爆发星系，拥有亮核的赛弗特星系与蝎

虎座 BL 型天体，以及上世纪四大天文发现之一的高亮度高红移天体——类星体……

关于活动星系的详细介绍请参考教材，这里不做赘述

银河系并不是平直的，而是存在翘曲结构，一般认为这是由于在旋转中受到了外界扭矩而导致

的，我们现在能够利用造父变星直接描绘出银河系翘曲结构的三维图像

关于翘曲的相关内容详见论文An intuitive 3D map of the Galactic warp’s precession traced by

classical Cepheids | Nature Astronomy，不会用 nature 的请自行前往 sci-hub

https://www.nature.com/articles/s41550-018-0686-7
https://www.nature.com/articles/s41550-018-0686-7
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图 3.12: 来自论文 doi:10.1038/s41550-018-0686-7

3.5.3 星系的红移

这一部分的主要目的是推导光的多普勒效应

首先我们知道，根据宇宙大爆炸原理，星系都在离我们远去，我们将这个相对速度称为退行速

度，退行速度与距离之间有哈勃定律

v = H0d

其中 H0 是哈勃常数，现在一般取为 72km/ (s ·Mpc)

之后我们定义红移量

z =
∆λ

λ0

其中 ∆λ 是测得波长与原始波长的差值

接下来我们来推导光的多普勒效应的公式
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按照惯例我们取 β =
u

c
对于观察者而言，由于钟慢效应，其接收到的光的周期为

T =
T0√
1− β2

接收到的波长为

λ = (c− u cos θ)T

代入可得接收到的频率为

ν =
c

λ
=

√
1− β2

1− β cos θν0

当然我们也可以采用四维波矢的方法

我们定义四维波矢

ki =
(ω
c
,k
)

由四维矢量的变换公式得

k(0)0 =
k0 − βk1√
1− β2

将

k0 =
ω

c
, k1 = k cos θ = ω

c
cos θ

代入可得与上述相同的结果

由于视退行速度往往延视线方向，因此我们取 θ = π，此时

ν =

√
1− β

1 + β
ν0

对于 u≪ c 的情况，该公式可化简为

ν = (1− β) ν0

用红移与退行速度来表示，则

v = cz

高红移（高速度）时

v =
(z + 1)2 − 1

(z + 1)2 + 1
c
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3.6 天体距离的测量

天体距离是除去天体本身物理属性外的一个重要数据，我们会依据天体的类型采用不同的测

距方式，因此这一节在介绍完常见天体后作为补充

考虑到很多测距方法都已在科普阶段就被提到过，因此这一节只做基础部分的介绍

3.6.1 天文中的距离单位

我们知道，天文中一般采用 3 种距离单位，但在实际计算中有时也会采用 SI 单位

IAU 关于各单位的定义请参考Measuring the Universe | IAU

第一种单位是天文单位（Astronomical Unit），用 AU 表示，一般我们认为 1AU 就是地球

绕太阳公转的平均距离，但实际上这个距离本身会随着时间与空间的位置而发生改变，秉持着 “单

位制应当使用不变常数来定义” 的原则，IAU 于 2012 年 8 月 30 日通过了关于天文单位定义的决

议 (IAU 2012 Resolution B2)，人为规定了 1AU = 149597870700m，在一般计算中我们往往也会取

1AU = 1.5× 108km

第二种单位是（喜闻乐见的）光年（light-year），用 ly 表示，顾名思义，1 光年是光在真空中

走一年的距离，注意，这里的年是儒略年（365.25天），因此 1ly = 9460730472580800m ≈ 63241AU

第三种单位是秒差距（Parsec），用 pc 表示，秒差距来源于三角视差，现在可以认为 1pc =

3600 · 180
π
AU ≈ 206265AU ≈ 3.261ly，这个 “206265” 是很重要的数值，需要牢记

对于恒星-行星等短距离系统我们一般使用天文单位，对于其他遥远天体则常用秒差距，光年

在天文上并不是一个常用的单位

3.6.2 对天体的测量方式

接下来我会根据测量所使用的原理对测量的方法进行分类，实际上不同的原理往往也对应了

不同天体的测量方式

基于 d = c∆t 的测量

顾名思义，这种方法的原理就是电磁波的传播与反射，我们通过雷达或者激光的方式对一个物

体发射一个脉冲，根据反射的时间就能计算出相应的距离，这种方法称为雷达测距

雷达测距可以达到非常高的精准度，但对来回的时间要求严格，因此这种方法只能用于人造天

体或者月球距离的测量

基于力学原理的测量

力学方法对应于开普勒第三定律
a3

T 2
=
GM

4π2

https://zhuanlan.zhihu.com/p/679446735
https://www.iau.org/public/themes/measuring/
https://www.iau.org/static/resolutions/IAU2012_English.pdf
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对于行星的周期是很好测量的，因此只要得到恒星的质量就可以得到行星轨道的绕转半长径，

这种方法适用于太阳系与其他单恒星的行星系统

基于视觉原理的测量

我们知道，从有一定距离的两个点上观察同一个目标，会发现目标在背景上的位置有差异，这

种现象称为视差（我们可以通过睁左眼与睁右眼的方式来感受视差对于判断距离的作用）

利用视差也可以测量月球距离，但在天文上更多用视差来测量恒星距离

我们画出视差的对应图，很显然

tan π =
a

d

我们知道对于小角度 tan θ ∼ θ

因此

d =
a

π

其中 π 就是我们所说的周年视差，而 a 一般就取天文单位，因此当周年视差为 1 角秒时天体

的距离就是一个秒差距（这里用到了弧度制与角度制的转化，即 1rad = 206265′′）
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这种测量方法称为三角视差法，适用于距离不是那么遥远的恒星（∼ 103pc）

在实际测量周年视差时，需要剔除由于地球的公转会带来另一种 “视差” 影响，这种影响就是

光行差，光行差是由于观察者自身的运动导致的视觉效应，类似于在运动的车上看落下的雨的轨迹

是倾斜的，因此光行差带来的角度偏移为

a =
v

c
sin θ

其中 θ 是运动方向与光线方向的夹角，可以在黄道坐标系下计算，对于地球轨道，我们定义

k =
v

c
= 20.49552′′ 为光行差常数

还有一种视差称为星群视差，其适用于在星系部分提到过的移动星团，我们知道由于投影效

应，移动星团存在一个辐射点，基于成员星自身的自行、退行速度与到辐射点的角距离，我们就可

以计算出整体星团的视差，从而得到距离

基于光度原理的测量

对于更遥远的恒星，三角视差就无法测量，于是我们转向基于光度的测量

用光度测量距离的原理是距离模数公式

M −m = 5− 5 lg d

对于单独的恒星，我们会通过拍摄光谱的方式来推断其光度，在恒星光谱中，某些特定的谱线

强度与绝对星等之间存在线性关系，由此就能得到恒星的距离，这种方法称为分光视差法，分光视

差法在计算中需要考虑星际消光带来的影响，其适用范围在 ∼ 104pc

对于晚型星（G、K 与 M 型星），我们发现光谱中电离钙的发射线宽度与绝对星等间存在关系

MV ∼ lnW

这种方法称为威尔逊-巴普法

对于球状星团，我们在星系一节中提到过球状星团的赫罗图能够反应成员星的演化历程，而主

序星由于其特定的机制使得其在赫罗图上的位置应当是普适的，因此我们将星团的赫罗图与恒星

的赫罗图进行重叠比较，待两者的主星序部分重合时读出两赫罗图的纵坐标之差，这个差值就是距

离模数，这种方法称为主星序重叠法

当然，在已确定某颗星为主序星（利用光谱）的情况下，也可以通过这种方式来计算单颗恒星

的距离

对于星系，我们在无法分辨出其星系晕内的球状星团时就需要寻找其他具有确定光度的恒星，

而这些恒星就是我们在恒星部分中所提到的 “量天尺”——造父变星与 Ia 型超新星

造父变星根据周光关系可以确定光度，而 Ia 型超新星本身具有稳定的最大亮度，又因为这两

种星本身具有较高的光度，其适用范围可达 ∼ 108pc

对于遥远的星系，这种寻找特定类型恒星的方法并不适用，但我们可以直接利用星系的面亮度

得到其对应的光度值，从而计算得到距离，这种方法称为星系亮度法
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基于红移的测量

这种方法针对非常遥远的星系，其基本原理参考上一节的 “星系的红移” 部分，这里不再赘述

另外，对于超大质量星系以及宇宙早期星系，需要考虑引力红移与宇宙学红移带来的影响

对“三”种红移的阐述 首先对于多普勒红移，我们需要明确这是基于无引力场下的平直时空求得

的，产生红移的原因来自于光源自身的三维速度，与我们所谓的“视退行速度”有本质区别；而在运用

红移测量距离时，本身是在基于宇宙学的框架下进行计算，因此我们写出宇宙学红移 z =
R(t0)

R(t1)
−1

,其中 R(t)是宇宙学度规下的宇宙尺度因子，因此在宇宙学角度上宇宙本身的膨胀造成了红移，我

们发现 H =
Ṙ(t)

R(t)
∼ v

d
，也就是说宇宙学红移带来的影响确实可以近似成一种“速度”产生的多普

勒红移，因此我们可以说“视退行速度”中同时包含了多普勒红移对应的绝对速度与宇宙学红移所

包含的宇宙膨胀速度，在实际计算中也可以用纯粹的多普勒频移公式来粗略的估计距离

而对于引力红移，这是基于广相所必定导致的结论，其对应于同一稳态时空中的同一稳态参

考系的不同点对应于同一辐射源的频率差异，我们取对应的度规 gij，则得到的引力红移值为 z =√
g′00
g00

− 1，对于常规球对称引力场所采用的史瓦西度规，我们得到 z =

√√√√√√1− 2GM

r2c2

1− 2GM

r1c2

− 1

然而我们应当对距离有明确的定义，基于光子自身测地线的特性，在宇宙学中一般通过光度距

离 dL 来表征实际的距离，而在这样的计算过程中实际上已经考虑了有引力场下度规形式所导致的

光测地线的弯曲，也就是说基于广义相对论的宇宙学对于（由红移求得的）距离的定义中实际已经

包含了引力所带来的影响，这也是为什么说“不需要考虑引力”的原因

But 这样的说法其实还是欠妥当的，因为红移值本质是一个观测量，我们基于前面的宇宙学的

推导都是在大尺度下的讨论，实际对于真正的观测而言，光子自诞生到真正沿测地线运动的过程中

已经收到了引力所带来的红移影响，我们测得的红移值应当认为是两类红移值交替作用的结果，即

1 + z = (1 + z1)(1 + z2)

ps. 实际上只有白矮星等高密天体以及特别大质量的类星体的引力红移才是可被探测的量，对

于一般的星系引力红移在实验上确实是可以忽略的量

其他

这一部分只对常用的方法做介绍，除了上述的测量方式，我们对天体的测量方式还包括 HII

区、行星状星云以及面亮度涨落等
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3.7 宇宙大尺度下的视角

考虑到学习基础部分的同学大多数没有足够的数学基础，这一部分更多的会偏向定性的结论，

基于场论的计算会在4.5宇宙学基础部分涉及

3.7.1 宇宙学原理

宇宙学首先是在可观测宇宙范围内进行的大尺度研究的学科，我们应当关注于大尺度下的整

体特性，当然也不能忽视局部的涨落

对于大尺度下的宇宙特征，我们假设：宇宙在大尺度上是均匀且各向同性的，这个假设称为宇

宙学原理

宇宙学原理的含义包括

1. 在宇宙学尺度上，空间任一点和任一点的任一方向，在物理上是不可分辨的，即无论其密度、

压强、曲率、红移都是完全相同的。但同一点，在不同时刻，其各种物理量却可以不同，即

容许存在宇宙演化

2. 宇宙中各处的观测者，观察到的物理量和物理规律是完全相同的，没有任何一个观测者是特

殊的，地球上观察到的宇宙演化图景，在其他天体上也会看到

注意，宇宙学原理本身只是一个认知上的约定，并不是定理，我们基于宇宙学原理给出了现代

宇宙学模型的数学表示与物理图像

3.7.2 现代宇宙学模型

现代宇宙学模型采用 ΛCDM 模型，其中 Λ 表示宇宙常数，对应于暗能量带来的作用，而

CDM 代表冷暗物质（cold-dark-matter），ΛCDM 模型基于由符合宇宙学原理的 R-W 度规，表征

广义相对论的爱因斯坦场方程以及表征热力学的物态方程共同建立起来

我们会在4.5宇宙学基础部分做真正的物理计算，这里先给出一些定性的结论

1. t0 =
1

H0

，哈勃常数的倒数具有时间的量纲，这个时间称为宇宙的哈勃年龄，注意，哈勃年龄

并不是宇宙的演化年龄

2. Λ 项对应的宇宙学常数影响宇宙膨胀的快慢，观测证据表明当前宇宙是在加速膨胀的，而在

科普中我们知道这是由暗能量引起的

3. 宇宙膨胀导致的红移称为宇宙学红移，这一点在上一节天体距离的测量中有浅显的阐述，对

于物质主导的平坦的无 Λ 宇宙，R (t) ∼ t2/3

4. 临界密度 ρc =
3H2

8πG
，这个值表征了物质主导的宇宙保持平稳的密度限

关于其他宇宙学模型请参考教材，这里不做赘述

https://zhuanlan.zhihu.com/p/679768787
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3.7.3 宇宙大尺度的演化

这一部分主要以提纲掣领的方式介绍宇宙的演变简史

0. 我们将大爆炸的瞬间计为 0 时

1. ∼ 10−44s 这段时间对应于普朗克时间，称为普朗克时代，此时时空尚处于量子化阶段

2. ∼ 10−35s 这段时间称为大统一时代，引力单独起作用，在这一时间点后强核力与弱点力分离，

重子不对称性形成，宇宙开始暴胀

3. ∼ 10−32s 暴胀结束，此时质子尚处于不稳定状态

4. ∼ 10−12s 弱核力与电磁力分离，此时宇宙活动较少，称为荒芜时期

5. ∼ 10−4 ∼ 10−2s 宇宙进入强子时代与轻子时代，宇宙初期的各粒子基本全部形成

6. 102 ∼ 103s 宇宙开始进行原初核合成（BBN）

7. ∼ 3m46s BBN 结束，自由中子消失，H 与 He 的元素比基本确定

8. ∼ 1011s (300 ∼ 700kyr) 光子与重子退耦，自由电子消失，稳定原子形成，宇宙由辐射主导转

为物质主导，这一段时期称为复合时代，也称为 “第一缕光”，是微波背景辐射诞生的时期

9. (700kyr ∼ 500Myr)引力作为主要力将物质束缚成团，宇宙中暂时没有能够发光的物体，这段

时期称为黑暗时代

10. ∼ 1016s 第一批恒星诞生，H 与 He 再次电离，星系、行星等开始形成

11. ∼ 1018s 现在
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3.8 天文竞赛中需要的物理基础

在高中天文竞赛的范围内，电磁学基本上没有任何作用，即使在 IOAA中涉及电磁场部分，也

会直接给出公式

而对于力学部分，我个人认为普通高中生实际缺乏的应该是数学基础，而非物理上的知识点的

缺失，因此纯力学的部分会放在4.1轨道力学介绍

为了保证知识的完整性，这一节会给出公式的推导，应赛的同学可以直接看结论

3.8.1 光学

几何光学

在爱好者阶段我们就知道，望远镜的放大倍率等于主镜的焦距除以目镜的焦距，接下来我们从

一般的几何光学的角度来看这个描述

大多数光学教材都会采用折射式望远镜来进行放大倍率的推导，但这里我们采取更一般的几

何光学概念——光瞳

在几何光学上，光瞳被定义为孔径光阑在光学系统中成的像，对于前半光学系统成的像称为入

射光瞳，后半光学系统成的像则为出射光瞳，而孔径光阑是限制入射光束中最起作用的光阑

我们一般定义放大率为入瞳直径与出瞳直径的比值，而（天文）望远镜观察的都是遥远的目标，

我们可以认为是平行光线入射，然后我们做出对应的光路图

望远镜的主镜一定是汇聚光线的，因此这里都用理想的凸透镜代替，而目镜则可以用凸透镜与

凹透镜来达到不一样的效果，因此我们对这两种透镜分别讨论

https://zhuanlan.zhihu.com/p/680189219
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对于凸透镜成像的目镜，主镜成的像（即焦点）在目镜之前，那么很显然我们可以取一种特殊

的 “光阑”（注意这不是孔径光阑，孔径光阑实际在下半图的位置，这里只是方便后续的计算），将

其放置于焦点上，这个光阑的孔径取为单个点，那么入射光瞳的直径就对应于主镜的入射面直径

D，而出射光瞳的直径就对应于成像的直径 d，基于相似三角形我们得到放大倍率 β = −f1
f2
，负号

表示倒像

对于凹透镜成像的目镜，同理我们也可以取这样的光阑，但此时不能取在焦点上（这会限制出

瞳的光束），我们将其取在目镜之前，孔径则恰好与出瞳直径相同，这时我们发现出瞳直径再次等

于 d，而入瞳直径恰好也等于 D（利用对称性），于是我们再次得到放大倍率 β =
f1
f2
，这说明成的

是正像

我们发现，入瞳直径往往直接由主镜的口径加以限制，由此得到出瞳直径等于口径与放大倍率

的比值，对于人眼我们一般认为这个值应当在 5mm 左右（对应于瞳孔的直径），由此得到的放大

倍率称为等瞳放大率，这个值表征了望远镜有效放大倍率的下限

对于传感器而言，我们直接将其靶面的尺寸作为出射光瞳，而传感器更加注重角度的分辨，利

用前面的知识，我们得到了传感器靶面对应的天球角度 δ ∼ d

f
另外望远镜的极限星等正相关于主镜直径的平方，集光效率负相关于焦比的平方，这两条可以

将望远镜类比于水桶接雨来理解

波动光学

关于衍射 在高中我们对干涉有比较 “深入” 的了解，但对于衍射更多停留在简单的定性了解，在

波动光学这一节会针对天文中遇到的衍射做定量计算

首先我们需要对衍射的类型进行区分，有限远处的光源产生的衍射称为菲涅尔衍射，而无穷远

（平行光线）产生的衍射称为夫琅禾费衍射，对于望远镜这类设备而言，其本身的主镜形状为圆形，

因此望远镜的衍射是夫琅禾费圆孔衍射

我们知道光强与光波函数的振幅的平方成正比（你可以类比成弹簧的总能量与最大位移的平

方成正比），因此我们只需要计算衍射后的光的振幅
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我们写出圆盘上的面积元

dS = ρdρdφ

该面积元对应的波函数

dE =

(
A0

πR2
dS

)
cos [ωt− k (r0 + δ)]

其中光程差

δ = (R + ρ cosφ) sin θ

全部代入并用复数表示

dE =
A0

πR2
ρdρdφei[k(r0+R sin θ)−ωt] · eikρ cosφ sin θ

对圆面积分得

E =

∫∫
dE =

A0

πR2
ei[k(r0+R sin θ)−ωt] ·

∫ R

0

∫ 2π

0

eikρ cosφ sin θρdρdφ

因此合振幅为

A =
A0

πR2

∫ R

0

∫ 2π

0

eikρ cosφ sin θρdρdφ

我们引入整数阶第一类贝塞尔函数

Jn (x) =
1

2π

∫ π

−π

ei(nt−x sin t)dt

代入可得光强值为

I = A2
0

J2
1 (2m)

m2

其中 m =
πR sin θ

λ
我们画出光强关于 m 的图像，取 A0 = 1
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第一个零点对应的 m 值约等于 0.61π

因此我们在一般计算时取衍射光斑（艾里斑）的半径

�θ = 0.61
λ

R
= 1.22

λ

D

这就是一般科普所说的望远镜最大分辨极限，当两个星点的角距离小于这个极限时，我们认为

两个星点是不能分辨的，这种方法称为瑞利判据

这个分辨角同时对应了目视观测时的最大倍率与传感器的最小像元尺寸（当然一般来说大气

湍流带来的视宁度影响就已经大于这个极限分辨角了）

关于偏振 在 IOAA 的考纲中还提到了 Faraday rotation，即磁致旋光，这属于偏振的内容，在天

文上我们通过对偏振的测量来推断磁场的大小

接下来我们从简单的电磁学角度推导磁致旋光的对应公式

我们认为磁场导致了介质的不均匀极化，这一点是由于磁场引起了电偶极子的微振动（实际上

应该写出介电常数张量，但这里全部从简）

我们先写出电子与原子核间的作用，我们认为原先是稳定

Fn = meω
2
0r

入射的圆偏振光

E = E0e
±iωt

我们写出电子的动力学方程，并取复位移 r̃

me
¨̃r = −eE0e

±iωt − iBe ˙̃r −meω
2
0 r̃

这是简单的二阶常系数线性微分方程，我们得到解

r̃ = −
eE0

me

ω2
0 − ω2 ∓ ωBω

e±iωt
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其中 ωB =
eB

me

对应洛伦兹力引起的角速度

接下来我们写出极化强度，介电常数也用复数表示

P = (ε̃r − 1) ε0E0e
±iωt = −Ner̃

我们得到对应的折射率

n± =
√
ε̃r =

√
1 +

Ne2

ε0me

ω2
0 − ω2 ∓ ωBω

那么磁致旋光的偏转角

δ =
ωl

c
(n+ − n−)

l 是通过介质的距离，近似得

δ = βBl

其中 β 对应于介质的旋光系数，可以用上述常量表示

3.8.2 热学

分子动理论初步

一般来说，天文上对普物热学的要求几乎为 0；在处理简并气体或是高压等离子体时，我们采

用的是基于统计物理的系综理论乃至量子系综，而对于一般的热力学计算也已经超过了普物热学

的基本难度；因此在这一部分我们简单学习普物热学中的分子动理论初步，这是与基础天文关联最

紧密的部分

按照传统的教材与教学思路，我们应当从基础的概率与速度空间入手，从简单的数学逻辑与物

理结论推导出麦氏分布，这里的推导省略了很多不必要的步骤

首先我们假设分子的速度是各向同性的，各分量互不影响，则速度分布函数

F
(
v2x + v2y + v2z

)
= g

(
v2x
)
g
(
v2y
)
g
(
v2z
)

两边同时取对数并取偏导得

1

g
(
v2x,y,z

) dg (v2x,y,z)
dv2x,y,z

= −α

从中解出（这里用到高斯积分
∫∞
−∞ e−x2

dx =
√
π）

g(v2x,y,z) =

√
α

π
e−αv2x,y,z

因此

F
(
v2
)
=
(α
π

)3/2
e−αv2
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依据能均分定理（粒子的每一个自由度对应的能量值 ε =
1

2
kT，其中 k 是玻尔兹曼常数），我

们知道方均速率（对应于三个自由度的平动动能）

v2 =
3kT

m

代入积分得

α =
m

2kT

因此，麦克斯韦速度分布

F
(
v2
)
=
( m

2πkT

)3/2
e−

mv2

2kT

对于任意分量

F (vx) =
( m

2πkT

)1/2
e−

mvx
2

2kT

我们在速度空间中取一薄球壳得麦克斯韦速率分布

f (v) = 4πv2F
(
v2
)
= 4π

( m

2πkT

)3/2
e−

mv2

2kT v2

由麦氏分布可以得到很多公式，我们先来计算平均速率

v =

∫ ∞

0

vf (v) dv = 4π
( m

2πkT

)3/2 ∫ ∞

0

v3e−αv2dv

对于形如
∫∞
0
xne−αx2

dx 的积分，我们可以通过换元与分部的方式进行降次，因此

v =

√
8kT

πm

同样我们可以计算最概然速率

df (v)

dv
= 4π

( m

2πkT

)3/2
e−

mv2

2kT

(
2v − mv3

kT

)
= 0

vp =

√
2kT

m

可以将这两种速度与方均根速率对比√
v2 =

√
3kT

m

气体粒子的速度会产生一定的多普勒效应，使得光谱上的谱线有一定的宽度，这种现象称为谱

线展宽，对于一个有宽度单独谱线，我们将其宽度定义为最大强度的一半处所对应的两个波长之

差，亦称为半高全宽（FWHM），在一般的计算上，产生多普勒效应的粒子速度可以取方均根速度

接下来我们从速度分布出发推导粒子的平均碰壁数

我们取一块与 x 方向垂直的墙壁，很显然只有 vx > 0 的粒子才能撞上墙壁，因此平均碰壁数

Γ =
n
∫∞
0
F (vx) dvx · dAdt

dAdt
= n

√
kT

2πm
=

1

4
nv
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关于小孔泄流请自行查阅教材，这里不做赘述

接下来我们关注粒子在空间中的运动，显然在运动的过程中一定会遇到其他的粒子，并可能会

发生碰撞，我们将能够发生碰撞的截面面积称为分子散射截面 σ（这类似于原子物理中的卢瑟福散

射）

因此分子的平均碰撞概率

Z = nσv12

v12 表示两粒子的相对速度

我们将两粒子分别的速度 −→v1 ,−→v2 用质心速度与相对速度 −→vc ,−→vr 表示

可以证明 d−→v1d−→v2 = d−→vcd−→vr
因此

f(−→v1 ,−→v2)d−→v1d−→v2 = f(−→v1)f(−→v2)d−→v1d−→v2 = f(−→vc ,−→vr )d−→vcd−→vr

我们先对 −→vc 积分得

f (−→vr ) d−→vr =
( µ

2πkT

)3/2
e−

µv2r
2kT d−→vr

其中 µ 就是之前提到的折合质量，对于相同粒子即取 µ =
1

2
m

因此我们得到相对速度的平均值

v12 = vr =

√
8kT

πµ
=

√
2v

因此实际平均碰撞概率

Z =
√
2nσv

我们引入平均自由程，其表示粒子在两次碰撞间走过的距离

λ =
v

Z
=

1√
2nσ

一些补充

在以往的选拔赛中有涉及绝热声速的推导，在这里补充其中的绝热过程

我们知道一般的热学过程都可以表示为 pV b = C 的形式，如等温过程 b = 1，等压 b = 0，等

容 b→ ∞，对于与外界没有热交换的绝热系统，绝热过程的 b = γ 称为绝热常数

接下来我们从简单的热学原理出发推导绝热常数

由热力学第一定律，绝热过程

∆U = W

对于理想气体，有

dU = nCV,mdT

其中的 CV,m 称为等容摩尔热容
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因此我们得到

−pdV = nCV,mdT

我们对克拉珀龙方程 pV = nRT 做全微分得

pdV + V dp = nRdT

代入化简得

(CV,m +R) pdV = −CV,mdp

其中的 CV,m +R = Cp,m 称为等压摩尔热容

因此绝热常数

γ =
Cp,m

CV,m

对于理想气体 CV,m =
i

2
R，因此

γ =
i+ 2

i

我们注意到绝热过程是等熵的过程

在这一节中反复出现自由度 i，这里对其做一些阐述

自由度是力学概念，表示描述一个物体运动状态所需的最少参数，对于单原子分子，其只有平

动，我们可以用三维坐标来描述，因此自由度 i = 3；对于刚性的双原子分子，其多了转动，我们可

以用转轴方向与转动角速度来描述，因此自由度 i = 5；对于弹性的双原子分子，其多了振动，虽

然振动只有单自由度，但其对应于双自由度的能量，因此自由度为 i = 6(7)

注意，自由度并不是完全固定的量，随着温度的降低会发生自由度锁定

补充声速

vs =

√
∂P

∂ρ
=
√
γRT

3.8.3 近代物理

又到了愉快的 “两朵乌云” 时间（

在高中我们对近代物理已经有了定性的认识，这里主要做定量的阐述，为了知识的完整性我们

会采用两种方法进行推导

黑体辐射

在讨论黑体辐射前，我们先来看爱因斯坦的辐射理论

我们知道对于一般的介质，其在受到辐射后有三种表现：吸收、反射与透射，三者之和对应于

接收到的辐射总量，而接下来我们要讨论原子受到辐射后的表现

首先是最简单的情形，原子吸收光子的能量发生跃迁，称为受激吸收，对应系数 B12

同样的外界辐射场也可能诱导原子跃迁释放光子，称为受激吸收，对应系数 B21



第三章 天文基础知识 78

在没有外界辐射场的情况下原子也会自发跃迁，称为自发辐射，对应系数 A21

三系数的关系不是简单相加，而是

ρν =
A21

B21

1
B12g1
B21g2

e
hν
kT − 1

其中 ρν 是辐射场能量密度，gi 是对应能级的统计权重，基于爱因斯坦辐射理论我们可以用黑

体中的原子导出黑体辐射公式，但我们不采用这种方式

首先我们给出普朗克时代的推导过程

普朗克认为，光子的能量应当是量子化的，即

ε = hν

我们认为黑体辐射是由不同能量的谐振子发出的，这些谐振子满足玻尔兹曼分布，即

ρ (E) ∼ e−
E
kT

对于谐振子产生的辐射，我们可以给出能量密度

u (ν, T ) = N (ν)E

其中 N(ν) 是关于频率的波模数，其对应于电磁波与谐振子达到热平衡时的状态

如果我们直接认为 E = kT（这对应于能均分定理），那我们得到的就是瑞利-金斯公式

u (ν, T ) =
8πν2

c3
kT

我们发现

N (ν) =
8πν2

c3

虽然瑞利-金斯公式存在紫外灾难，但这个表达式是正确的，实际上普朗克也确实借鉴了这个

式子

接下来我们计算能量子假设下的平均能量

E =

∑∞
n=0 nεe

− nε
kT∑∞

n=0 e
− nε

kT

利用数学变形与等比数列求和，我们得到

E =
ε

e
ε
kT − 1

全部带入后我们得到普朗克公式

u (ν, T ) =
8πhν3

c3
1

e
hν
kT − 1

实际我们需要的是能流密度 I =
cu

4

I (ν, T ) =
2πhν3

c2
1

e
hν
kT − 1
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利用 |dν| = c

λ2
dλ 我们得到

I (λ, T ) =
2πhc2

λ5
1

e
hc

λkT − 1

然而这样的做法本身是不合理的，接下来我们来叙述统计物理的方法

首先我们将黑体中的辐射视为光子气体，这样的光子气体显然达到热平衡，因此化学势 µ = 0

我们知道光子属于玻色子，因此光子气体遵循玻色分布

nk =
1

e
εk−µ

kT − 1
=

1

e
h̄ω
kT − 1

我们知道波矢在间隔内的本征振动数为

V

(2π)3
4πk2dk

其中 V 是场的体积，我们将 ω = ck 代入，且光量子数应当等同于振动数的两倍（因为光子有

左旋与右旋两种偏振态），得到光量子数
V ω2dω

π2c3

乘上分布与能量即得普朗克公式

dEω =
V h̄ω3

π2c3
dω

e
h̄ω
kT − 1

在得到普朗克公式后我们就可以计算其他的公式

我们令 x =
hc

λkT
，将普朗克公式对 x 求导得

dI

dx
=

2πk5T 5

h4c5
5x4 (ex − 1)− x5ex

(ex − 1)2
= 0

5− x = 5e−x

得到非零解

xm = 5 +W
(
5e−5

)
= 4.965

其中 W (x) 是朗伯 W 函数

因此我们得到取最大值

λmT =
hc

kxm
= b ≈ 2.898cm ·K

这就是维恩位移定律

接下来我们将普朗克公式对于全波段积分

E =

∫ ∞

0

I (ν, T ) dν =
2π5k4

15c2h3
T 4 = σT 4

这里用到积分公式

∫ ∞

0

x3dx

ex − 1
=
π4

15
或

∫ ∞

0

xn−1dx

ex − 1
= ζ (n) Γ (n)

我们得到的就是斯特藩-玻尔兹曼公式

另外，光子气体的压强与理想气体类似

p =
u

3
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原子结构

玻尔公式 在高中我们学习了氢原子的玻尔公式

∆E = RH

(
1

n2
1

− 1

n2
2

)
接下来我们从原子物理的角度理解这个公式

首先我们从玻尔那套似是而非的量子理论入手，玻尔认为电子在轨道上的角动量是量子化的，

其遵守的量子化条件为（也可以认为是电子的德布罗意波在轨道上满足驻波条件，这被认为是稳定

的结构）

L = nh̄

对于圆轨道有

meω
2rn =

e2

4πε0r2n

因此我们可以得到轨道半径

rn =
4πε0n

2h̄2

mee2

轨道能量

En = −mee
4

8ε20h
2

1

n2

我们可以用约化质量进行修正

En = −mee
4

8ε20h
2

M

M +me

1

n2

正如普朗克一样，玻尔也用错误的方式得到了正确的结果，接下来我们基于经典量子力学给出

推导，这一部分会相对简略

我们将库伦势 V = − e2

4πε0

1

r
代入定态薛定谔方程 − h̄2

2m
∇2ψ + V ψ = Eψ

运用常规的分离变量法我们得到径向方程

− h̄2

2m

d2u

dr2
+

[
− e2

4πε0

1

r
+

h̄2

2m

l (l + 1)

r2

]
u = uE

我们取 ρ = kr, k =

√
−2mE

h̄
, ρ0 =

me2

2πε0h̄
2k
，得到化简式

d2u

dρ2
=

[
1− ρ0

ρ
+
l (l + 1)

ρ2

]
u

利用渐进形式，ρ→ ∞ 时，方程近似为

d2u

dρ2
= u

我们得到（符合物理的）解

u (ρ) ∼ Ae−ρ
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ρ→ 0 时，方程近似为
d2u

dρ2
=
l (l + 1)

ρ2
u

同样的，解的形式为

u (ρ) ∼ Cρl+1

分离渐进式

u (ρ) = ρl+1e−ρv (ρ)

我们采用幂级数的方法来解

v (ρ) =
∞∑
j=0

cjρ
j

代入得到递推公式

cj+1 =
2 (j + l + 1)− ρ0
(j + 1) (j + 2l + 2)

cj

我们先认为 j 很大，因此

cj =
2j

j!
c0

u (ρ) = c0ρ
l+1eρ

此时 u (ρ) 与 ρ 的关系发生了变化，我们需要一个最大 jmax 值来进行限制

c(jmax+1) = 0

2 (jmax + l + 1)− ρ0 = 0

我们定义

n = jmax + l + 1

在原子物理中这个值称为主量子数，其表征了库伦场下的量子效应，也对应于一般所说的主能

级；由之前关于常数 k, ρ0 的定义，我们得到

E = −

[
m

2h̄2

(
e2

4πε0

)2
]

1

n2

这与之前的玻尔公式是一致的

原子散射 在天文中原子结构的散射对象往往是光子，因此高中学习的卢瑟福散射并没有多大作

用，我们需要讨论的是康普顿散射与汤姆孙散射

康普顿散射在高中时也有接触，其表示光子被带电粒子散射后的波长变化，对于电子的康普顿

效应这里直接给出公式

∆λ =
h

mec
(1− cos θ)

其中 θ 是散射角，公式推导直接联立能量守恒与动量守恒即可（认为是碰撞）

汤姆孙散射则是指电磁波的入射使得电子发生运动从而产生电磁波
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接下来我们从最简单的电动力学出发推导汤姆孙散射截面

入射的电磁波方程

E⃗ = E0e
i(ωt−k⃗·r⃗)P̂

电子运动方程

m¨⃗r = −eE⃗

（接下来我们用电偶极对应的辐射来推导，实际也对应电子加速产生的辐射）我们认为电子的

运动与电偶极类似，写出电偶极的矢势

A⃗ = −µ0

4π

iω

r
eik⃗·r⃗p⃗

写出对应关系

H⃗ =
1

µ0

∇× A⃗

E⃗ =
iZ0

k
∇× H⃗

其中 Z0 是波阻，我们认为 r ≫ λ，将上述式子代入化简得

H⃗ =
ck2

4πr
eik⃗·r⃗(n⃗× p⃗)

E⃗ = Z0H⃗ × n⃗

代入电偶极在空间中产生的辐射

dP

dΩ
=

1

2
Re
(
r2n⃗ · E⃗ × H⃗∗

)
全部化简得到

dP

dΩ
=

e2sin2θ

16π2ε0c2
〈
a2
〉

这与加速的电子产生辐射的公式是一致的

我们计算加速度的平均得 〈
a2
〉
=

e2

2m2
E2

0

取入射能流

I =
〈
S⃗
〉
· n⃗ =

ε0cE
2
0

2

定义散射截面
dσ

dΩ
=

dP
dΩ

I

积分得到最后的散射截面

σ =
8π

3
r2c

其中 rc =
e2

4π2ε0m0c2
是电子的经典半径

我们在计算光压时一般也会使用汤姆孙截面
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狭义相对论入门

这一部分将重点讨论狭义相对论的数学基础——洛伦兹变换

在狭义相对论中我们考察的对象不再是简单的质点，而是四维时空中的事件点，其四个分量分

别对应了空间上的三维坐标与时间坐标，按照惯例我们取静止系 P 与沿 x 方向以 v 匀速运动的

P ′，洛伦兹变换给出了两个系中事件点的分量关系

首先我们从最简单的方法推导洛伦兹变换

根据之前的约定我们合理的认为纵向方向上的分量不变

y′ = y, z′ = z

我们假设在两个坐标完全重合时为 0 时，此时

(x, y, z, t) = (x′, y′, z′, t′)

此时从原点处发出一个光脉冲，经过一定时间 t 后在 x 处接收到，因此

x = ct, x′ = ct′

我们知道伽利略变换不能保证 “光速不变原理”，而这是狭义相对论的基本假设，因此我们可

以认为洛伦兹变换与伽利略变换之间相差了一个线性因子，这个因子使得洛伦兹变换能够保证光

速不变

x′ = γ (x− vt)

x = γ (x′ + vt′)

联立四个式子我们得到

γ =
1√

1− β2

其中 β =
v

c
, γ 称为洛伦兹因子，这在相对论中是非常常用的变换因子

由此我们得到另外两个分量的关系

x′ =
x− vt√
1− v2

c2

t′ = γ

(
t− xβ

c

)
=

t− vx
c2√

1− v2

c2

这就是洛伦兹变换的常见形式

从简单的坐标变换出发我们可以通过求导得到速度变换

ux
′ =

ux − v

1− βux

c

uy
′ =

√
1− β2uy

1− βux

c
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uz
′ =

√
1− β2uz

1− βux

c

我们也可以得出尺缩钟慢效应的表示

l =
√

1− β2l0

∆t = γ∆t′

注意，洛伦兹变换是事件点坐标间的变换，并不是长度等测量量间的变换

接下来我们用另一种方法来看洛伦兹变换所表示的时空观

我们注意到，光速与时间的乘积具有长度的量纲，这说明我们可以将其与空间坐标并列，我们

用四维矢量的方式表示这个量

xi = (ct, r)

其中 r = (x, y, z) 表示事件点的三维坐标

我们定义四维矢量的平方为

s2 = gijx
ixj

其中 gij 是四维矢量对应的度规张量，在之后的表示中都默认使用爱因斯坦求和约定

gij =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


注意，张量不是矩阵，在这里为了方便表示而采用矩阵的形式；关于张量的数学定义请参考数

理提纲中的相关教材，若只想了解其在相对论中的物理含义可以参考朗道《场论》中的简单解释

在两个事件之间的四维矢量表示对应的时空间隔，我们根据时空间隔的实虚（即 s212 与 0 的大

小）将间隔分为类时间隔与类空间隔

我们可以得到两事件的时空间隔元

ds2 = gijdx
idxj = c2dt2 − dx2 − dy2 − dz2

狭义相对论的基本假设认为不同惯性系下的时空间隔元是一致的

ds2 = ds′2

我们假设一个时钟与动系是固连的，因此

dx′2 + dy′2 + dz′2 = 0

我们可以推出

dt′ =

√
1− dx2 + dy2 + dz2

c2dt2
dt =

√
1− v2

c2
dt



第三章 天文基础知识 85

于是我们再次得出了动钟变慢的公式

接下来我们从四维矢量出发推导洛伦兹变换，同样的取 P, P ′ 系，我们还是认为纵向方向上没

有伸缩，基于时空间隔元的不变性，我们可以认为四维矢量是 “转动对称” 的（洛伦兹变换构成了

洛伦兹群，洛伦兹群是 O(3, 1) 群，其保证了正交性，这里的正交性对应于线性空间中的转动）由

于四维矢量的度规张量的 “负号”，我们将转动用双曲函数来表示
ct′

x′

y′

z′

 =


coshψ − sinhψ 0 0

− sinhψ coshψ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z


我们考虑某一时刻 P ′ 系中原点的运动（x′ = 0），我们得到

tanhψ =
x

ct
= β

由此我们再次得到洛伦兹变换
ct′

x′

y′

z′

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z


我们将这个中间这个变换矩阵称为洛仑兹变换矩阵 Λj

i，任何四维矢量的变换都可以用这个变

换矩阵联系起来（按照逻辑应当说四个分量满足洛伦兹变换的量称为四维矢量，只是我们之前已经

用度规限制了四维矢量在闵可夫斯基空间中的形式）

A′j = Λj
iA

i

其中 Ai = (A0,A)，A0 是类时分量，A 对应的三个分量称为类空分量

在这里（简单的狭义相对论体系下），四维矢量具有相对论协变性，两四维矢量的标积 AiBi—

—四维标量具有相对论不变性

当然我们也可以用度规张量给出四维矢量的协变分量

Aj = gijA
i

利用洛伦兹变换我们可以给出四维速度

ui = (γ, γβ)

四维加速度与四维速度正交

uiωi = 0
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由相对论质能关系

ε2 = m2c4 + p2c2

我们得到四维动量

pi =
(ε
c
,p
)

求导得到四维力

gi = (
f

c
· βγ, f

c
γ)

当然我们也可以给出四维角动量，这是一个二阶张量

M ij =

(
c
∑(

tp− εr

c2

)
,−M

)

在电动力学中我们同样能给出电磁场的四维势

Ai = (φ,A)

以及电磁场张量

Fij = (E,H)

由此我们得到能动张量

T ij =
1

4π

(
−F ikF j

k +
1

4
gijF lmFlm

)
关于电动力学的内容这里从略，其对于天文竞赛的解题并没有太大作用
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写在前面——关于天体物理

按照指南的顺序，你应当已经学习完了第三章天文基础知识部分，这一部分对应一般大学天文

系的天文学导论基础课程，也对应高中天文竞赛的整体考试范围

接下来你将要学习的天体物理部分并不完全对应大学的专业课程，其更多的偏向于 “针对竞赛

的天体物理课选讲”，在这一部分当中我们将会运用高于普通高中的数学物理工具来引入天体物理

的相关内容，单单从应赛的角度而言并没有像上一部分那么有用

在学习这一部分内容前，你需要首先确定自己有足够的数学物理基础（这些基础可以在物理竞

赛的学习中全部获得）（数学基础可以查看 FA），具体来说，数学部分包括分析（达到《高等数学》

即可）、代数（熟悉矩阵的相关运算，最好能学习一些张量内容）、几何（高中补充的解几）与统计

（基本的统计手法），物理部分包括力学（普物 + 一定的分析力学）、热学（普物 + 一定的热统）、

光学电学（普物应该够用）、近代物理（主要是相对论部分，可能需要场论来加深理解）。

这一部分的参考教材为 §0.4.1的后两本。涉及纯物理的情况下可以参考物理学科的教材以及

Wikipedia 上的解释

希望这一部分能帮助高中生了解天体物理的冰山一角，并进一步迈入天文学的大门，若能在将

来从事天文相关的研究自然再好不过，但请牢记，在当前的教育体制下，高考与强基依旧是进入高

校的主要途径，因为过多的超前学习而挤占了正常的课内时间得不偿失

87
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4.1 轨道力学

轨道力学应当说是经典力学在天文学上的重点运用之一，也是天文竞赛在基础后拔高的主要

方向之一，在这一节中我们将主要基于经典力学对部分重要的概念与问题给出定量的解释与计算，

这之中的数学方法在天文竞赛上也有很大作用

当然，轨道力学的题目在早些年的物理竞赛中也是 “天体题” 的一大考察方向，学有余力的同

学可以参考物竞的模拟题与真题来增强自身的解题能力

4.1.1 从比耐方程到开普勒三定律

比耐方程

我们将平方反比力约束下的二体问题称为开普勒问题，接下来我们从经典力学的角度求解开

普勒问题

我们将坐标原点取在其中一个物体上，另一个物体相当于在有心力场中运动，我们用极坐标的

形式来表示，由之前行星一节的补充我们知道角动量守恒

L = mr2θ̇

写出极坐标下的加速度并与牛顿第二定律相联系

an = r̈ − rθ̇2 = −F (r)

m

这里的负号表示方向，我们将角速度用角动量这一常量替换，并用

d

dt
=

L

mr2
d

dθ

作为新的 “微分算子” 替换掉对时间的求导，得到新的方程

L

mr2
d

dθ

(
L

mr2
dr

dθ

)
− L2

mr3
= −F (r)

m

我们作变量替换

u =
1

r

原方程可化简为
d2u

dθ2
+ u =

m

L2u2
F

(
1

u

)
这就是一般有心力场下的比耐方程

我们将引力场下的 F = GMmu2 代入得到

d2u

dθ2
+ u =

GMm2

L2

这是一个简单的二阶微分方程，我们得到通解

u = A cos (θ + θ0) +
GMm2

L2

https://zhuanlan.zhihu.com/p/681543567
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显然 r(θ) 的确与圆锥曲线的形式一致，我们取合适的长轴方向有

r =
p

1 + e cos θ

通过简单的几何关系，我们得到

p =
L2

GMm2

e =

√
1 +

2EL2

G2M2m3

其中 E 是机械能，这是开普勒第一定律的物理表示

只有椭圆这类闭合轨道才有周期的定义，我们从椭圆推导开普勒第三定律

对于椭圆，有

p = a
(
1− e2

)
我们得到

L = m
√
GMp = m

√
GMa (1− e2)

因此

T =
πab
L
2m

=
2πa

√
a√

GM

关于修正可以继续使用约化质量

LRL 矢量的引入

接下来我们引入一个看似硬凑出来的量——拉普拉斯-龙格-楞次（Laplace-Runge-Lenz，

LRL）矢量，按照传统我们定义 LRL 矢量为

A = v×L+
αr

r

其中 α = −GMm 是力的比例系数，我们将 LRL 矢量对时间求导

dA

dt
=
dv

dt
×L+ 0+

αv

r
− αr (v·r)

r3

我们将之前的径向加速度带入
dv

dt
得

dA

dt
=
α

r3
(
r × (r × v) + r2v − r (v · r)

)
由矢量三重积公式我们得到

dA

dt
= 0

这说明在开普勒问题下 LRL 矢量是个守恒量，其同时也表征了轨道长轴的取向与形状，这在

解决某些问题时有强大的作用

接下来我们从简单的相空间角度探究 LRL 矢量守恒的本质
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首先对于开普勒问题其哈密顿量的形式为

H (r, p) =
p2

2m
+
α

r

很显然我们写出角动量对应的运动积分

M = (M1,M2,M3) = [r, p]

其中的 [, ] 是相空间中的换位子，这个式子对应角动量守恒

同样的我们写出 LRL 矢量对应的运动积分

W = (W1,W2,W3) =
[ p
m
,M

]
+
αr

r

接下来我们要计算这些量之间的泊松括号，首先我们得到

{pi,Mj} =


0 p3 −p2

−p3 0 p1

p2 −p1 0


由此我们可以计算得到

{Mi,Wj} =


0 W3 −W2

−W3 0 W1

W2 −W1 0


更进一步的计算得到

{Wi,Wj} =


0 −2E

m
M3

2E
m
M2

2E
m
M3 0 −2E

m
M1

−2E
m
M2

2E
m
M1 0


这里的 E = H (r, p) 表征了系统的机械能

基于上述的讨论，我们将这两个矢量作为生成元张成一个李群

G = {M,W}

可以证明

G ∼


SO (4) , E < 0

G′ (R3) , E = 0

SO (1, 3) , E > 0

这里的 G′ (R3) 表示 R3 空间中运动群的李代数

因此这两个矢量相当于其同构群的对称核，基于诺特定理我们知道 LRL 矢量必然是守恒量，

这是其对称性带来的必然结果

另外 LRL 矢量的对称性来源于平方反比力，这种动力学对称性不同于其他的几何对称性，因

此 LRL 矢量的守恒律不是普适的
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4.1.2 微扰下的轨道稳定性

有效势的引入

在一般的力学计算中，一个点的稳定性往往通过其势能的导数来判断，在开普勒问题中，我们

同样也可以借助有效势来判断稳定性

我们知道极坐标下的速度为

v = ṙr̂ + rθ̇θ̂

因此总机械能

E =
1

2
mṙ2 +

1

2
mr2θ̇2 + V (r)

这里的第二项可以看作是离心力产生的势能，我们称其为离心势

因此我们定义有效势

Veff =
L2

2mr2
+ V (r)

这里我们已经用守恒的角动量重写了离心势

我们将有效势与 0 比较，有效势小于零时为束缚态，大于则为散射态

同样的，有效势的二阶导小于零为稳定，大于零则为不稳定

进动
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进动是轨道力学中常见的现象，简单的说就是轨道长轴（姑且这么说）随着每一个周期的绕转

而发生一定角度的绕转，这个 ∆φ 称为周期进动角，对应的也有进动角速度（这里的定义与欧拉角

的定义不同）

在上一小节我们引入了 LRL 矢量，其表征了轨道长轴的指向，因此在计算进动时能够很好的

简化计算，但同样我们知道平方反比力下的 LRL 矢量守恒，因此进动应当是由非平方反比力引起

的，这种力就是一种微扰

首先我们考虑一种比较特殊的微扰，我们假定这种额外的作用是立方反比力

F (r) =
α

r2
+
β

r3

重新对 LRL 矢量求导，并用角度来表示

dA

dt
= −β

r
θ̇θ̂

由此我们得到

∆A = −
∫

β

r
θ̂dθ

因此对应的周期进动角

∆φ =
|∆A|
|A|

=
πeβ

peα
=
πmβ

L2

当然我们也可以解比耐方程来得到这个答案

L2

m

d2u

dθ2
+

(
L2

m
+ β

)
u = −α

这又是一个简单的二阶微分方程

ω′ =

√
1 +

mβ

L2

我们再次得到周期进动角

∆φ = 2π (ω′ − 1) ≈ πmβ

L2

我们知道力与势能的关系

f = −∇V

基于势能相对更好表示与运算的特点，我们往往用势能来表示微扰

V (r) = V0 + δV

接下来我们还是先用 LRL 矢量来推导进动角，同样的先对其求导

dA

dt
=

1

m
δf ×L

这里的 δf = −∇ (δV ) 对应于微扰的力

我们记进动角速度为 Ω，LRL 矢量的旋转对应于垂直于长轴的分量

|Ω×A| = GMmeΩ =

∣∣∣∣dAdt cos θ
∣∣∣∣
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因此进动角

∆φ =

∫
Ωdt

当然我们同样也可以从比耐方程出发，我们可以先得到径向速度

ṙ = ±

√
2

m [E − V (r)]
− L2

m2r2

这里的正负号用于表示方向，因此角度为

θ = ±
∫

L

mr2
dr

ṙ
= ±

∫
L

r2
dr√

2m [E − V (r)]− L2

r2

由此得到进动角

∆φ =

∮
± L

r2
dr√

2m [E − V (r)]− L2

r2

− 2π

利用一阶近似与关系 ṙ =
Le sin θ
mp

我们可以得到与 LRL 矢量方法相同的结果

∆φ =

∫ 2π

0

mp2δV dθ

L2e2 sin2 θ

在科普中我们常提到水星近日点的进动验证了广义相对论的正确性，接下来我们就用简单的

方法来计算这个经典例子（这也是物竞中的经典例题）

我们合理的认为太阳附近的引力场是中心对称的，因此周围的时空间隔满足史瓦西度规，我们

用球坐标的方式将其表示出来

ds2 =
(
1− rg

r

)
c2dt2 − r2

(
sin2 θdφ2 + dθ2

)
− dr2

1− rg
r

其中 rg =
2GM

c2
对应于中央天体的史瓦西半径

我们知道行星在一个平面上绕转，并取某一时刻，因此忽略时空间隔中的 θ 项与 t 项，并将其

凑为比耐方程的形式
d2u

dφ2
+ u =

3GM

c2
u2 +

GMm2

L2

由此我们得到对应的微扰

δf =
3GML2

mc2r4

δV =
GML2

mc2r3

代入之前的公式得到广相下的进动角

∆φ = 6π

(
GMm

Lc

)2

关于轨道的稳定性这里再补充一点，可以证明：系统的总机械能是关于中央天体质量的浸渐不

变量，因此在中央天体质量发生缓慢变化（例如缓慢的物质抛射）的情况下，绕转天体的离心率是

（基本）不变的

春分点的进动是由月球产生的力矩引起的轴进动，并不包括在轨道进动中
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4.1.3 限制三体问题的特解 拉格朗日点

在行星一节中我们初步接触了拉格朗日点对应的位置与计算方法，在这一节中我们将重点讨

论这些点的稳定性，我们约定两颗主星之间的距离为 1，其中质量较大的为 M，较小的为 m，并

记 µ =
m

m+M
我们将坐标原点取在两星的质心处，显然大质量的在 (−µ, 0) 处，小质量的在 (1− µ, 0) 处

L1, L2, L3 点的近似计算

虽然天文竞赛中允许使用计算器，我们能直接通过数值逼近的方式得到前三个点的解，但是对

于这三个点的基本的近似计算还是应当掌握

由开普勒第三定律我们可以得到在拉格朗日点上的物体的角速度为

ω =
2π

T
=
√
G (M +m)

我们先对 L1 点写出牛顿第二定律

ω2x =
GM

r1
− Gm

r2

化简得

x− 1− µ

(x+ µ)2
+

µ

(x− 1 + µ)2
= 0
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这是一个五次方程，在 L1 点的范围内只有一个根

接下来我们认为 M ≫ m 并给出近似，在这个条件下可以认为 r2 是小量，我们重写方程

1− µ− r2 −
1− µ

(1− r2)
2 +

µ

r22
= 0

整理得

3

√
µ

3
= r2

3

√
1− r2 + r22/3

1− 2r2 + r22 + 2r32 − r42
= a

右侧展开到三阶得

a = r2 +
1

3
r22 +

1

3
r32 +O

(
r42
)

反演得

r2 = a− 1

3
a2 − 1

9
a3 +O

(
a4
)

由此我们得到 L1 点的近似式

x1 ≈ 1− µ− 3

√
µ

3

同理我们写出 L2 点对应的方程

1− µ+ r2 −
1− µ

(1 + r2)
2 − µ

r22
= 0

反演结果为

r2 = a+
1

3
a2 − 1

9
a3 +O

(
a4
)

同理我们得到 L2 点的近似式

x2 ≈ 1− µ+ 3

√
µ

3

L3 点的计算方法基本相同，我们写出对应方程

1− µ− r2 +
1− µ

(r2 − 1)2
+
µ

r22
= 0

我们记 b = 2− r2，此时 b 是小量

将方程整理得

µ =
1/ (1− b)2 − (1− b)

1 + 1/ (1− b)2 − 1/ (2− b)2

同样的我们对右侧展开到三阶

µ =
12

7
b− 23

49
b3 +O

(
b4
)

反演得

b =
7

12
µ+

1127

20736
µ3 +O

(
µ4
)

由此我们得到 L3 点的近似式

x3 ≈ −1 +
5

12
µ

我们在之前就已提到过，L4, L5 点是由正三角形特殊的动力学性质决定的，即使没有 M ≫ m

做限制，这两个平动点依旧存在且表达式不变
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拉格朗日点的稳定性

正如上一节所提到的，我们用有效势来判断稳定性

容易写出拉格朗日点对应的有效势

Veff = −G
[
1

2
(M +m)

(
x2 + y2

)
+
M

r1
+
m

r2

]
在实际计算中我们往往采用约化后的有效势

U =
1

2

(
x2 + y2

)
+

1− µ

r1
+
µ

r2

我们令 m = 1，给出不同 M 下的有效势，如图所示

从图像上我们能立刻定性的给出 L1, L2, L3 点都是不稳定的结论，这也可以用高中导数题的

“隐零点” 方法来给出定量的判断

接下来我们来给出一般的做法，我们设拉格朗日点的坐标为 (x0, y0)，现在给其一个微扰，为

了之后方便表示我们记微扰为 (x0 +X, y0 + Y )

我们写出微扰对应的动力学方程

Ẍ − 2Ẏ =

(
∂2U

∂x2

)
0

X +

(
∂2U

∂x∂y

)
0

Y
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Ÿ + 2Ẋ =

(
∂2U

∂y2

)
0

Y +

(
∂2U

∂x∂y

)
0

X

不同的稳定性对应的动力学特征不同，我们写出方程对应的矩阵形式
Ẋ

Ẏ

Ẍ

Ÿ

 =


0 0 1 0

0 0 0 1

Uxx Uxy 0 2

Uxy Uyy −2 0




X

Y

Ẋ

Ẏ


这个系数矩阵有其动力学意义，我们写出对应的特征方程

λ4 + (4− Uxx − Uyy)λ
2 + UxxUyy − U2

xy = 0

依据特征根的实虚我们就能判断对应点的稳定性

对于 L1, L2, L3 点有 y0 = 0，因此

Uxx = 1 + 2k

Uyy = 1− k

Uxy = 0

其中 k =
1− µ

r31
+
µ

r32
对应的特征根满足

(λ1λ2) (λ3λ4) = 1 + k − 2k2

而这三个点又对应于有效势极值
∂U

∂x
= 0

化简可以得到 k > 1

因此系数矩阵有一对共轭复根与一对实根，一般情况下这对实根为正实根，说明微扰随着时间

而增大，即前三个点是不稳定的，但在极好的初值条件下可以使正根无法取到，我们认为这是一种

特殊的稳定条件

Ẋ =
2λ2

λ2 + Uxx

Y

Ẏ = −1

2

(
λ2 + Uxx

)
X

著名的 SOHO 卫星就是在这样的日地 L1 轨道上运行

对于 L4, L5 点有 x0 =
1

2
− µ, y0 = ±

√
3

4
，因此

Uxx =
3

4

Uyy =
9

4
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Uxy = ±3
√
3

4
(1− 2µ)

化简得到对应的特征方程为

λ4 + λ2 +
27

4
µ (1− µ) = 0

我们得到对应的特征根

λ2 =
−1±

√
1− 27µ (1− µ)

2

这说明我们可以找到一些情况使得所有特征根都是虚根，这些情况对应于

0 < µ <
27−

√
621

54
≈ 0.0385

这个 0.0385 就对应于 L4, L5 稳定的临界值，物竞的同学对这个值一定很熟悉

大多数行星都满足这个临界条件，例如太阳与木星的对应点上就有希腊群与特洛伊群两个小

行星聚集区

请注意，我们探讨的稳定性都是对于拉格朗日点上质量非常小的物体的动力学稳定性而言，并

不代表整个三体系统的稳定性

4.1.4 飞行器的轨道

写的时候发现这一部分好像是多余的（基本就是讲例题）

这一部分将重点围绕下图展开
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因为（无推力的）飞行器围绕地球的轨道也可以视为圆锥曲线，其焦点与地球的质心重合，为

了简便运算我们将地球表面视为球面，其半径为 R，质量为 M

35 届复赛第一题 假设地球是一个质量分布各向同性的球体。从地球上空离地面高度为 h 的空间

站发射一个小物体，该物体相对于地球以某一初速度运动，初速度方向与其到地心的连线垂直。已

知地球半径为 R，质量为 M，引力常量为 G。地球自转及地球大气的影响可忽略。

（1）若该物体能绕地球做周期运动，其初速度的大小应满足什么条件？

（2）若该物体的初速度大小为 v0，且能落到地面，求其落地时速度的大小和方向（即速度与其

水平分量之间的夹角）、以及它从开始发射直至落地所需的时间。

已知：对于 c < 0，∆ = b2 − 4ac > 0，有∫
xdx√

a+ bx+ cx2
=

√
a+ bx+ cx2

c
− b

2 (−c)3/2
arcsin2cx+ b√

∆
+ C

式中 C 为积分常数。

这道题对应于我们高中常见的平抛运动，我们重点计算第二小题中涉及到的时间

按照参考答案的解法，我们先写出机械能守恒与角动量守恒

1

2
m

(
dr

dt

)2

+
1

2
mr2

(
dθ

dt

)2

−G
Mm

r
=

1

2
mv20 −G

Mm

R + h

r2
dθ

dt
= (R + h) v0

联立化简得

dr

dt
= −

√
−(R + h)2 v20

r2
+

2GM

r
+ v20 −

2GM

R + h

t =

∫ R+h

R

rdr√(
v20 − 2GM

R+h

)
r2 + 2GMr − (R + h)2 v20

利用题目中给出的积分公式我们得到

t =
R + h

2GM − v20 (R + h)

√
2GMRh

R + h
− v20 (2R + h)h

+GM

[
R + h

2GM − v20 (R + h)

] 3
2
[
π

2
+ arcsinv

2
0R (R + h)−GM (R− h)

GM (R + h)− v20 (R + h)2

]
当然我们也可以用轨道的极坐标形式与开普勒第二定律对应的面积定律给出相同的结论

r =
L2

GMm2

1 +
√

1 + 2EL2

G2M2m3 cos θ

r = R 时 θ = θ0

最终时间为

t =

∫ θ0
π

1
2
r2dθ

L
2m
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可以验证这两种方法给出的答案是一致的

我们写出高中时的平抛运动时间

t = R

√
2h

GM

令 G =M = R = 1，画出对应的图像，不难发现这其实是 v0 和 h 都很小下的近似，随着速度

与高度的增大，抛物线的拟合精度会越来越低

CNAO2019 第 18 题 （高年组）垂直发射的炮弹

垂直发射的炮弹是否会落回炮口，这是很久以前曾出现过的争论。

考虑在赤道处从地面垂直向上发射一颗炮弹，忽略空气影响，则：

（1）当弹丸落回地面时，落点会正好位于炮口、位于其东侧、还是位于其西侧，列出判断依据。

（2）设弹丸发射的初速为 v0，弹丸飞行高度远小于地球半径。推导落点到炮口的距离与 v0 的

关系，请列出过程。

（突然发现天文竞赛顺眼了很多

我们还是采用上一题的模型，我们认为炮弹发射时水平速度来自于地球自转
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vt = ωR

很显然随着炮弹的升空其相对于地心的绕转角速度始终小于地球的自转角速度，由此我们得

到其落点在炮口的西侧

其余的计算与上一题类似，这里不做赘述

这个模型非常经典，在 IOAA 中也有类似的身影，需要重点掌握

图 4.1: IOAA2021-11

4.1.5 一些补充

在行星一节中我们给出了刚体洛希极限的推导，在这里补充一种（错误的）流体洛希极限的推

导
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我们夸张的认为靠近的天体是非常特殊的流体，其能够被拉伸成两个球体相切的临界状态，每

个球体的质量与半径为 m, r

两球体所相差的引潮力为
4GMr

d3

我们（错误的）写出两球体之间的引力

Gm

4r2

由此我们得到对应的洛希限为

d = r (16M/m)1/3

还是用密度来表示

d = 2.52R (ρM/ρm)
1/3

很显然这个系数与 2.44 依旧不同（毕竟这是完全错误的算法），但我们还是定性的给出了一般

天体对应的洛希极限的上界，关于洛希极限的完整做法可参考相关文献过客流体天体的洛希极限

在很多科普文中都在极力强调洛希瓣与希尔球的区别，这里需要明确，虽然两者有概念上的差

别，但实际上都是在描述空间中的引力场分布，在拉格朗日点的推导中我们已经明确了 L1 点就是

洛希瓣的中央节点，而在一般的估算中希尔球的半径就对应于推导部分的 3

√
µ

3
对于椭圆轨道的天体可以取近日点处为单位，利用 M ≫ m 我们给出希尔半径近似

r = a (1− e) 3

√
m

3M

最后关于春分点的进动有一种比较巧妙的计算方法，其将月球与太阳的引力视作圆环的作用，

将地球质量集中在 “赤道环” 上，从而给出了简洁的计算结果，这里从略，详见关于二分点进动的

一种计算方法

https://dxwl.bnu.edu.cn/CN/abstract/abstract7639.shtml
https://mp.weixin.qq.com/s/uVxkottAZy9JzZ60lTxtdw?poc_token=HMWrwGWjQ-1nZMSNlnYoMBHlNi8Q2fQqF160dzYW
https://mp.weixin.qq.com/s/uVxkottAZy9JzZ60lTxtdw?poc_token=HMWrwGWjQ-1nZMSNlnYoMBHlNi8Q2fQqF160dzYW


第四章 天体物理 103

4.2 辐射理论

辐射是天体的重要物理过程，在基础部分我们通过对光度与亮度的阐述，建立起了对 “接受辐

射” 的相关认识，而在这一节中我们将重点讨论辐射的产生与传递

4.2.1 黑体辐射（热辐射）的定量计算

已经迁移至3.8.3物理基础中

这一部分对应于最经典（最理想）的辐射机制，在没有提示的情况下所有天文竞赛中的题目都

会默认采用黑体辐射作为发光模型

4.2.2 爱因斯坦的黑体观点

辐射中的物理量

在基础部分中，我们大致阐述了天文上的光度与亮度所对应的物理概念，而在辐射过程中，我

们有必要从物理上建立标准的 “命名体系”

我们认为单位时间内单位面积上单位立体角中通过的单位频率上的能量（请忽略这一长串的

“单位”，实际对应的就是图上的微元）为

dEν = IνdA cos θdΩdνdt

https://zhuanlan.zhihu.com/p/681968383


第四章 天体物理 104

这里的 dA cos θ 对应于辐射的投影面积，在基础部分已经阐述过

我们将这个 Iν 称为单色辐射强度，这是一个非常基础的量，我们往往用其推导出更常用的量

来表示辐射的性质，如我们将其对频率积分得到总辐射强度

I =

∫ ∞

0

Iνdν

也可以对立体角积分得到平均辐射强度

Jν =
1

4π

∮
IνdΩ

这里除以 4π 对应于我们需要的 “平均”

辐射强度对应的单位面积元上通过的能量，我们将单位面积元替换为单位体积元，得到（单色）

辐射能量密度

uν =

∫
dEν

dA cos θcdt =
1

c

∮
IνdΩ =

4π

c
Jν

同样的我们也可以推导（单色）辐射能流密度

Fν =

∫
dEν

dAdνdt
=

∮
Iν cos θdΩ

将其对频率积分我们得到一般意义上的辐射能流密度

F =

∫
Fνdν =

∮
I cos θdΩ

由此我们又回到了起点，这个辐射能流密度就对应了我们在基础部分提到的 “亮度”，而在一

般的电磁学中，其也对应着波印廷矢量

S = E×H

在物理基础中我们也给出过对应的平均能流密度

S=
1

2
Re (E×H∗)

从上述阐述不难看出，辐射强度与到光源的距离无关

爱因斯坦辐射理论

在物理基础部分我们初步提到了爱因斯坦辐射理论，这里做一些全面的阐述

我们先给出对应系数的含义，我们设辐射场的能量密度为 ρν (or uν)

受激吸收对应系数 B12，其表征单位时间内在辐射场中电子吸收光子后发生跃迁的概率

P (B12) = ρνB12

同样的受激吸收对应系数 B21 表示为

P (B21) = ρνB21
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而自发辐射对应系数 A21 则简单的表示为

P (A21) = A21

我们认为在热动平衡下光子的发射数与吸收数是相等的，即

N1ρνB12 = N2 (A21 + ρνB21)

由此我们得到

ρν =
A21

B21

1
N1B12

N2B21
− 1

而对于二能级系统有玻尔兹曼分布

N2

N1

=
g2
g1
e−

hν
kT

代入后我们就得到了在物理基础中给出过的公式

ρν =
A21

B21

1
B12g1
B21g2

e
hν
kT − 1

我们将其与普朗克公式比较

u (ν, T ) =
8πhν3

c3
1

e
hν
kT − 1

由此我们得到对应系数的关系为

g1B12 = g2B21

A21 =
8πhν3

c3
B21

（这里的系数与《天体物理学》一书中的定义不同）

4.2.3 辐射转移过程

发射与吸收

爱因斯坦的辐射理论给出了对辐射场中的介质行为的微观解释，而在宏观上我们将介质行为

简单的分为发射与吸收

发射与一般的辐射类似，我们写出单位体积元在（以下）单位间隔内发射的能量

dEν = jνdV dΩdν

我们将这个 jν 称为单色体积发射系数

对于吸收，我们认为辐射每经过单位长度后都会线性的减弱，因此

dIν = −ανIνds

我们将这个 αν 称为单色体积吸收系数
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在微观上我们认为吸收是由介质粒子引起的

αν = nσν

其中 n 是粒子数密度，σν 是粒子吸收截面

有时我们也会将吸收系数表示为

αν = ρκν

其中 ρ 是介质密度，κν 是介质不透明度

我们定义光学深度（光深）为

τν =

∫ l

0

ανds

根据光深与 1 的大小我们将介质分为 “光学厚” 与 “光学薄”

对于简单的介质吸收，解对应的微方方程有

Iν = Iν(0)e
−τν

而我们知道
∫∞
0
xe−xdx =

∫∞
0
e−xdx = 1

因此我们可以得到介质内光子的平均自由程

λ =
1

αν

辐射转移方程

辐射转移描述的是辐射经过介质的过程，一般的介质同时会有发射与吸收，因此

dIν = −ανIνds+ jνds

利用上一部分中光深的定义我们重写方程

dIν
dτν

= −Iν +
jν
αν

我们定义源函数

Sν =
jν
αν

由此我们得到辐射转移方程
dIν
dτν

= −Iν + Sν

特别的，对于各向同性的无色散介质（天文竞赛中一般也只考虑这类介质），有

Sν = Jν

而热动平衡下的介质满足普朗克公式

Jν =
c

4π
u (ν, T ) = B(ν, T )
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我们回到辐射转移方程，这是一个简单的一阶线性微分方程，我们得到解

Iν (τν) = Iν (0) e
−τν +

∫ τν

0

Sν (tν) e
−(τν−tν)dtν

对于源函数是常数的解为

Iν (τν) = Iν (0) e
−τν + Sν

(
1− e−τν

)
有时我们认为光深是只与介质厚度有关的量 dτν = −ανdz，此时方程化为

cos θdIν
dτν

= Iν − Sν

其中 θ 是辐射方向与介质平面法向方向的夹角

由此得到的出射解为

IOut
ν (τν) =

∫ ∞

τν

Sν (tν) e
−(tν−τν) sec θ sec θdtν

在基础部分我们提到过辐射经过介质是会发生散射，从宏观角度上看我们也可以将其归入 “吸

收” 一类，这意味其的确导致了整体辐射强度的下降，我们给出

dIν = −βν(Iν − Jν)ds

我们将这个 βν 称为单色体积散射系数

同时我们定义光深 dτν = (αν + βν) ds（这里的 αν 对应于纯吸收）并给出新的源函数

Sν =
αν

αν + βν
B (ν, T ) +

βν
αν + βν

Jν

此时原先的辐射转移方程的形式并没有改变，这也是我们想要的结果

关于辐射在转移过程中的耗散及其他影响因素请参考教材如《Radiative Process in Astro-

physics》等，这里不做展开（ps. 不建议参加竞赛的同学花费时间在这一方面上）

4.2.4 其他辐射类型

除了黑体辐射产生的连续谱与电子跃迁产生的经典线状谱外，电子本身的加速运动也会产生

辐射，我们依据电子的运动模式给出不同的辐射类型

电动力学基础补充

首先需要明确，电磁场相关的内容只靠普物的电磁学手段也是能够解决的，所谓电动力学不过

是更加好的数学工具与物理手段而已（只是希望非物竞生不要将精力放在电动力学的学习上）

在电动力学中我们统一采取高斯单位制

在物理基础部分我们曾给出过电磁场张量，我们用其来表示第二对麦克斯韦方程组

∂F ik

∂xk
= −4π

c
ji
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我们引入洛伦兹规范
∂Ai

∂xi
= 0

由此我们得到经典的达朗贝尔方程

∆A− 1

c2
∂2A

∂t2
= −4π

c
j

∆φ− 1

c2
∂2φ

∂t2
= −4πρ

其中 ∆ = ∇2 对应于拉普拉斯算子

解这个非齐波动方程我们得到特解

A =
1

c

∫
jt−R/c

R
dV +A0

φ =

∫
ρt−R/c

R
dV + φ0

其中 R 是体积元到势能 “观察点” 的距离，我们将包含距离的两个积分式称为推迟势

接下来我们考虑一个运动的电荷，其位矢 r = r0 (t)，显然时刻 t 时在 “观察点” 的场是由一段

时间前 t′ 的电荷运动状态决定的，我们记 R (t) = r − r0 (t)，结合推迟势的公式得到

t′ +
R (t′)

c
= t

在 t′ 时刻粒子为静止的参考系中，观察点在 t 时刻的势为库伦势，由此我们得到任意参考系

下的四维势的表达式

Ai = e
ui

Rkuk

其中 uk 是电荷的四维速度，Rk = [c (t− t′) , r − r′]

我们发现 RkR
k = 0，由此我们得到运动电荷的势的形式为

φ =
e

R− v·R
c

A =
ev

c
(
R− v·R

c

)
这样的势称为李纳-维谢尔势

对应的我们可以求出运动电荷产生的场

E = e
1− β2

(R−R · β)3
(R− βR) +

e

c2 (R−R · β)3
R× [(R− βR)× v̇]

H =
1

R
R×E

我们知道辐射功率分布为
dP (t)

dΩ
= (S · n)R2
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因此运动电荷的辐射功率角分布为

dP (t′)

dΩ
=

e2R

4πc3
|R× [(R− βR)× v̇]|2

(R−R · β)5

当然我们也可以求得总功率

P (t′) =

∫
dP (t′)

dΩ
dΩ

在非相对论近似下

P (t′) =
2e2v̇2

3c3

我们将其表示为

P (t′) =
2d̈

3c3

这对应了非相对论下的偶极辐射

相对论极限下为

P (t′) =
2e2

3c
γ6
[
β̇2 −

(
β × β̇2

)]
有了电动力学工具后我们可以很快的求解不同运动状态的电子产生的辐射

电子在磁场中运动——回旋辐射、同步加速辐射与曲率辐射

电子在磁场中由于受到洛伦兹力的作用而加速产生辐射，对于非相对论电子这种辐射称为回

旋辐射，对于极端相对论电子称为同步加速辐射，而对于被强磁场束服在弯曲磁力线上的相对论电

子则称为曲率辐射

在高中我们知道，电子在洛伦兹力的约束下会以螺旋线的方式绕某一根磁感线运动，初始速度

中平行于磁场方向的分量驱使电子向前运动，而垂直于磁场方向的分量用于绕转，这种绕转的在磁

场方向上的投影是个圆
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我们写出对应的运动方程
dp

dt
=

d

dt
(γm0v) =

−e
c
v ×B

从而解得对应的绕转角速度与绕转半径

ω =
ωL

γ

r = γrL

ωL =
eB

m0c
对应于拉莫尔频率，rL =

v⊥
ωL

对应于拉莫尔半径

对于回旋辐射 γ ∼ 1，因此对应的辐射功率

P =
2

3

e4

m2
0c

5
v2B2 sin2 α

我们取 r0 =
e2

m0c2
对应于电子的经典半径，将原式化为

P =
2

3
r20cβ

2B2 sin2 α

平均后得到

P =
4

9
r20cβ

2B2

类似的，对于同步加速辐射，有

P =
2

3
r20cβ

2γ2B
2 sin2 α

P =
4

9
r20cβ

2γ2B2

我们发现两者只相差一个洛伦兹因子的平方

对于曲率辐射，我们认为其可以看作是特殊的同步加速辐射，由于强磁场的约束，我们可以近

似的认为绕转半径为 0，电子紧贴磁力线运动，而对应的加速度则由磁力线的曲率半径来提供，这

一部分的计算与上述类似，不做赘述

当然，在电动力学中我们可以通过傅里叶变换对辐射做谱分解，对于回旋辐射，这里不加证明

的给出

Ps =

(
8π2e2ν2L
γ2v

)[
sβ2J2s

′ (2sβ)− s2γ−2

∫ β

0

J2s(2su)du

]
其中 νL =

ωL

2π
, J2s, J2s

′ 分别是整数（偶数）阶第一类贝塞尔函数及其导数

这个公式是由周期运动推出的，对于螺旋运动需要做洛伦兹变换，只要将该公式中的 β 替换

为
β⊥√
1− β2

//

即可（γ 也要替换）

关于这些辐射的其他内容如谱指数等请参考教材



第四章 天体物理 111

电子在光子场中运动——逆康普顿散射

在基础部分我们知道光子作用于静止电子时会发生康普顿散射，同样的，在光子场中运动的电

子也会与光子发生逆康普顿散射，这同样是一种经典的辐射过程

首先我们对康普顿散射做一些补充，在基础部分我们已经知道

hν =
hνi

1 + hνi
mec2

(1− cos θ)

（i 就是 input 表示入射）

在基础部分我们计算过汤姆孙散射的散射截面，在这里直接给出康普顿散射的微分散射截面

dσ

dΩ
=

1

2
r20

(
ν

νi

)2(
νi
ν
+
ν

νi
− sin2 θ

)
该截面的推导需要用到 QED，详见温伯格《量子场论》§8.7 或康普顿散射的 QED 计算

对立体角积分我们得到 Klein-Nishina 公式

σ = 2πr0

{
1 + x

x3

[
2x (1 + x)

1 + 2x
− ln (1 + 2x)

]
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

}
其中 x =

hν

m0c2

对于低频入射，我们近似得到

dσ

dΩ
=
r20
2

(
1 + cos2 θ

)
这与汤姆孙散射的公式是一致的，因此

dP

dΩ
=
r20
2
S
(
1 + cos2 θ

)
其中 S 是入射的能流密度

接下来我们来看逆康普顿散射，我们记观察者所在的系为 S，与电子一同运动的系为 S ′，ψi, ψ

分别是入射光子和出射光子与电子速度方向间的夹角，散射角 θ = ψi + ψ

在 S ′ 系中有康普顿效应

hν ′ =
hν ′i

1 +
hν′i
mec2

(1− cos θ′)
在两个系之间有多普勒效应

hνi
′ = γhνi (1− β cosψi)

hν = γhν ′ (1− β cosψ′)

由此我们得到逆康普顿散射对应的公式

hν =
γ2hνi (1− β cosψi) (1 + β cosψ′)

1 + γhνi
m0c2

(1− β cosψi) (1− cos θ′)

同时我们也可以利用康普顿散射的辐射功率分布与功率的洛伦兹变换得到逆康普顿散射的总

功率

P =
32

9
γ2r20cu

其中 u 是辐射场的能量密度

https://zhuanlan.zhihu.com/p/565436739
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电子在库伦场中运动——韧致辐射

电子与离子发生碰撞时产生的辐射称为韧致辐射，从微观上说，我们可以认为这是电子在离子

的库伦场中加速所产生的辐射

首先我们来考虑最简单的近似，我们认为电子以瞄准距离 b 与速度 v 进入离子的库伦场并被

离子 “俘获”，碰撞的特征时标

τ =
b

v

在时标内我们认为加速度是稳定的

a =
Ze2

mb2

利用偶极辐射我们得到最简单的功率形式

P =
2Z2e6

3c3m2b4

当然这种近似只能给出数量级上的估计，接下来我们用经典理论来计算，此时电子是非相对论

的

我们知道库伦场也是平方反比力产生的场，由轨道力学的推导我们能够得出电子的轨道应当

是双曲线，进一步的我们得到相应的轨道参量

r =
p

1 + ϵ cosφ =
a (ϵ2 − 1)

1 + ϵ cosφ

a =
Ze2

2E
=
Ze2

mv2

ϵ =

√
1 +

2EL2

mZ2e4

我们用双曲函数来表示平面坐标

x = a (ϵ− coshα)

y = b sinhα

我们知道 α 与 t 有关，因此我们可以分别对两坐标做傅里叶变换

x (ω) =
1

2π

∫ ∞

−∞
x (t) eiωtdt

y (ω) =
1

2π

∫ ∞

−∞
y (t) eiωtdt

我们可以引入汉克函数（第三类贝塞尔函数）

H(1)
ν (ix) =

1

iπ

∫ ∞

−∞
e−νt+ix sinh tdt

H(1)
ν

′ (ix) =
1

iπ

∫ ∞

−∞
e−νt+ix sinh t sinh tdt
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由此我们可以重新表示两坐标

x (ω) =
a

2π
H

(1)
iωa/v

′
(
iωaϵ

v

)

y (ω) = −a
√
ϵ2 − 1

2ωϵ
H

(1)
iωa/v

(
iωaϵ

v

)
我们考虑电子在数密度为 N 的等离子体中运动，可以得到对应的辐射功率谱分布为

P (ω) = N
4π2e2v2a3

3c3
H

(1)
iωa/v

(
iωaϵ

v

)
H

(1)
iωa/v

′
(
iωaϵ

v

)
在低频近似下有

P (ω) = N
32πe2v3a2

3c3
ln bmax

bmin

其中 bmax = a, bmin =
v

ω
对应瞄准距离的上下限

电子在介质中运动——切连科夫辐射

切连科夫辐射是电荷的运动速度大于介质中的光速时产生的辐射，其效果类似于空气中的 “马

赫锥”，这种辐射并不来自电荷本身，而是介质粒子加速产生的整体效应

从图上我们可以轻松的得出

cos θc = sin θi =
u

v
=

c

nv

其中 θc, θi 分别是切连科夫角与锥面的半顶角

由于介质的存在，我们认为电场强度与真空相差了因子
√
εr，而辐射传播的速度下降为 u，因

此对应的李纳-维谢尔势需要修正为

φ =
e/
√
εr

R− v·R
u

A =
ev

c
(
R− v·R

u

)
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由此我们可以得到对应的谱分布

dW (ω)

dΩ
=
e2β2 sin2 θ

c
n (ω) |δ (1− nβ cos θ)|2

由表达式中的 δ 函数我们得到只有在

cos θc (ω) =
1

n (ω) β

的方向上才有足够强的辐射（这里因为是对全时间积分才有 δ 函数出现，由于介质的体积尺

度我们一定会在时间上进行截断，因此辐射严格说并不是在单个方向上达到无穷大）

进一步我们得到功率谱分布

P (ω) =
e2ωβ

c

(
1− 1

n2 (ω) β2

)
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4.3 恒星物理

这一部分的主要内容是基于物理角度对基础部分的完善与补充

当然，恒星物理作为天体物理中的一大专业方向，在高中阶段无法全面了解，这一部分也只是

针对天文竞赛中常见的内容做一些相对深入的阐述

4.3.1 恒星光度的更深理解

这一小节的内容已经基本前移至基础部分，这里对谱线做一点补充

在基础部分中我们提到过由于分子的热运动，谱线会发生多普勒频移从而形成宽度，而事实

上，即使没有多普勒效应，发射线本身也具有宽度

在量子力学中有不确定性原理

∆x∆p ≥ h̄

2

同样的也有

∆E∆t ≥ h̄

2

（注意时间不是算符）

https://zhuanlan.zhihu.com/p/682260096
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我们知道激发态不是稳定态，处于激发态的原子寿命很短，我们记这个平均寿命为 τ，注意，

在将这个时间带入不确定性关系时需要重新列式计算，我们取

∆Eiτi ≈ h̄

我们又知道 ∆E = h∆ν

由此我们定义

γ =
∆E1 +∆E2

h̄
=

1

τ1
+

1

τ2

这里的 γ 称为谱线的自然线宽，其也是 FWHM

4.3.2 恒星的 “标准模型”

恒星结构的基本方程

我们合理的认为（现在讨论的）恒星是球对称的稳定天体，其通过核反应产生能量，通过电磁

辐射释放能量，且中心光度为零

首先我们给出最基本的质量方程

dM (r)

dr
= 4πr2ρ

与光度方程
dL (r)

dr
= 4πr2ρε

其中 ε 是产能效率，依赖于温度、密度与化学组成

我们考虑在 r 上的微元的动力学平衡，很显然其受到的引力为

GM (r)

r2
ρdSdr

上下表面的压力差为

dPdS

由此我们得到流体静力平衡方程

dP

dr
= −GM (r)

r2
ρ

对于通过辐射传导能量的部分，我们写出对应的球坐标下的辐射转移方程

∂I

∂r
cos θ − ∂I

∂θ

sin θ
r

= j − ρκI

我们在方程两边同时乘上 cos θ，对所有方向积分，并用之前学过的量替换

F =

∫
I cos θdΩ



第四章 天体物理 117

u =
1

c

∫
IdΩ

P =
1

c

∫
I cos2 θdΩ

由此我们得到化简式
dP

dr
+

1

r
(3P − u) +

κρ

c
F = 0

在物理基础中我们补充过光子气体的压强 P =
u

3
，而再利用黑体辐射的结论我们得到

F = − 1

3κρ

d

dr

(
4σT 4

)
而我们知道光度与辐射能流的关系

L = 4πr2F

由此我们得到（辐射的）能量传输方程

dT

dr
= −3κρL (r)

64πr2T 3

恒星的内部

首先我们来看恒星内部的压力构成，也就是常说的物态方程

对于大多数的恒星，内部的主导压为理想气体的压强

P = nkT

对于像太阳这样的氢核恒星，可以进一步写为

P =
ρ

µmH

kT

其中 µ 是平均分子量

事实上这也对应了非简并等离子体的物态方程，对于简并离子气会在各代表类型中阐述

当然，光子气体的辐射压也需要考虑，需要注意的是，这种辐射压需要考虑等离子体介质对光

子的不透明度

上一小节中我们讨论了辐射传能，接下来我们来看另一种传能方式——对流传能

我们考虑一个体元的微扰，如果在辐射压下这个微扰是不稳定的，那么就会进一步产生对流，我

们设这个微扰是径向的 dR，初始位置处的压强与密度为 P1, ρ1，微扰后所处的压强与密度为 P2, ρ2，

我们认为体元内的气体在微扰过程中不与外界做热交换，可以视作绝热过程，因此体元内的气体满

足

P ∗
2 = P2, ρ

∗
2 = ρ1

(
P2

P1

)1/γ

我们认为的对流条件即为

ρ2 > ρ∗2
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由此我们得到微扰的关系式

dρ

ρ
>

(
P + dP

P

)1/γ

− 1 =
1

γ

dP

P

我们采用理想气体的物态方程，可以将式子化为

dT

dr
<
γ − 1

γ

T

P

dP

dr

右侧称为绝热温度梯度，一般我们认为达到对流平衡时对流传热的梯度与绝热梯度是一致的

灰大气模型与临边昏暗

我们将吸收系数与频率无关的介质称为灰色介质，由此形成的恒星大气称为灰大气

我们写出表面对应的辐射转移方程，这里的 τ = 0

I(0, θ) =

∫ ∞

0

S (τ) e−τ sec θ sec θdτ

爱丁顿引入了对方向平均的三个分量，这与我们之前提到的参量代换是对应的

J =
1

4π

∫
I (τ, θ) dΩ =

cu

4π

H =
1

4π

∫
I (τ, θ) cos θdΩ =

F

4π

K =
1

4π

∫
I (τ, θ) cos2 θdΩ =

cP

4π

联系辐射转移方程，我们可以得到
dK

dτ
= H

我们采用爱丁顿近似，取 I1, I2 分别代表向外与向内的辐射强度，并认为

J =
1

2
(I1 + I2)

H =
1

4
(I1 − I2)

K =
1

3
J

再次回到表面，这里没有向内的辐射，我们可以推出

J (τ) = (3τ + 2)H

进一步的我们可以得到

T 4 =
T 4
eff

2

(
1 +

3

2
τ

)
即表面温度

T0 =
4

√
T 4
eff

2
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光深为 2/3 处的温度对应有效温度

我们知道在热动平衡下

J ∼ B ∼ S

由此我们可以得到临边昏暗的近似表达式

I (0, θ) =
F0

2π

(
1 +

3

2
cos θ

)
= I (0, 0)

(
2

5
+

3

5
cos θ

)

4.3.3 恒星的磁流体理论

以下论述统一采用高斯单位制

等离子体基础

我们认为恒星的活动是由气态等离子体与磁场相互作用而形成的，这里先对等离子体的相关

性质做一些补充

首先我们来关注等离子体的典型尺度，写出最简单的泊松方程

∇2φ = 4πne

我们在一维上解这个方程得到

−eφ = 2πne2x2

而依据能均分定理我们认为电子的一维动能是
1

2
kT，由此我们得到对应的距离

λD = x =

√
kT

4πne2

我们称这个距离为德拜半径，只有大于这个尺度的等离子体才能看作是电中性的

接下来我们来关注等离子体中的离子势，首先由玻尔兹曼分布

ni = ni0 exp
(
−Zieφ

T

)
因此泊松方程的形式应当为

∇2φ = 4πe
∑

Zini

我们引入

κ2 =
4πe2

T

∑
ni0Z

2
i

将方程化为

∇2φ− κ2φ = 0

运用渐进条件，得到中心对称解为

φ =
Ze

r
exp (−κr)
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事实上我们可以认为

λD =
1

κ

对于（太阳这样的）氢离子组成的等离子体就化为上面提到的形式

对于一个小的微扰，我们基于牛顿力学写出对应的动力学方程

me
d2x

dt2
= −4πne2x

由此我们得到等离子体频率

ωpe =

√
4πne2

me

我们考虑电磁波穿过等离子体的情况，先写出麦克斯韦方程组的最后一式

∇×B =
4π

c
j +

1

c

∂E

∂t

两边对时间求偏

∇× ∂B

∂t
=

4π

c

∂j

∂t
+

1

c

∂2E

∂t2

对麦氏方程组的第二式求旋

∇× (∇×E) = ∇ (∇ ·E)−∇2E = −1

c
∇× ∂B

∂t

代入消去磁场项并利用到 k·E = 0，化简得

(
ω2 − c2k2

)
E = −iωj

而我们认为电流项是由上述的等离子体频率产生的，由此得到对应的色散关系

ω2 = ω2
pe + c2k2

因此只有大于等离子体频率的电磁波才能穿过等离子体

磁流体动力学基础

这里只给出一些重要概念的解释，详细请参考教材如朗道《连续介质电动力学》第八章及《物

理动理学》第五章的相关内容

我们认为介质的磁导率与 1 差别很小，并直接取 µ = 1，进一步我们认为流体是理想流体，这

实际表明介质的 σ → ∞

我们需要一些方程来描述流体在磁场中的运动，我们先写出基本的磁场方程

∇ ·B = 0

∂B

∂t
= ∇× (v×B)
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其中第二个方程可以将麦氏方程组的第二式、第四式与

j = σ

(
E +

v ×B

c

)
联立，并使 σ → ∞ 得到

接下来我们写出基本的流体动力学方程，包括连续性方程

∂ρ

∂t
+∇ · (ρv) = 0

与欧拉方程
∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

f

ρ

而这里的力体积密度实际上就对应于电磁力密度

f =
1

c
(j ×B)

我们引入流体的协变导数

D =
d

dt
=

∂

∂t
+ (v · ∇)

可以进一步化简欧拉方程

上述的四个基本方程与物态方程

P = P (ρ, T )

共同构成了描述理想流体磁流体动力学的完备方程组

对于无耗散的运动，我们认为其是绝热的，这对应于熵守恒

dS

dt
=
∂S

∂t
+ (v · ∇)S = 0

或者

Pρ−γ = Const

我们先来看方程组中的第二个方程，其与流体力学中的涡旋方程

∂ω

∂t
= ∇× (v × ω)

的形式是一致的，这说明磁力线是 “依附在” 流体上的，这种现象称为磁力线冻结，对应的方程也

称为冻结方程

我们将 ∇×B =
4π

c
j 回代入欧拉方程，将右侧的旋度项展开得

∂B

∂t
= (B · ∇)v − (v · ∇)B −B (∇·v)

我们将连续性方程带入并化简得

d

dt

B

ρ
=

(
B

ρ
· ∇
)
v
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这表明
B

ρ
是一个与磁力线 “伸缩”有关的量，这让我们联想到经典力学上的横波 v =

√
T

ρ
，而

对应磁力线的磁张力可以近似表示为
B

4π
，由此我们得到磁力线上扰动的波速为

vA =
B√
4πρ

这样的 “磁力波” 称为阿尔文波

将磁流体理论作用于太阳上发展出了太阳发电机理论，其基础对应于湍流发电机，这一部分请

参考教材，可以定性的认为太阳的较差自转与小尺度湍流共同作用于磁场，从而导致了太阳活动的

周期性变化

4.3.4 恒星的演化

恒星演化时标

在基础部分我们用核反应大致估计了恒星的寿命，这样的时间称为爱因斯坦时标

而在早期没有建立质能方程时，人们提出了开尔文-亥姆霍兹时标，该时标认为恒星的能源来

自于引力势，我们估计恒星的总引力能为

Φ ∼ GM2

R

对于太阳我们估计其时标

tK ∼ Φ

L
∼ 107yr

当然从量级上看其与核反应相差巨大

恒星的形成

我们知道恒星是从星云中诞生的，而星云本身可以视作磁流体，我们这里考虑最简单的情况，

认为星云整体静止且无磁场作用
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我们先给出对应的方程组
∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇φ

∇2φ = 4πGρ

我们认为微扰的形式为 ρ = ρ0 + ρ1, v = v0 + v1, v0 = 0, φ = φ0 + φ1，方程组可化为

∂ρ1
∂t

+ ρ0∇ · v1 = 0

∂v1

∂t
= −v

2
s

ρ0
∇ρ1 −∇φ1

∇2φ1 = 4πGρ1

这里已经用物理基础中给出过的声速公式 vs =

√
∂P

∂ρ
替换掉了压强项

分别对欧拉方程求散度，对连续性方程求偏，我们可以化简得到最终的波动方程

∂2ρ1
∂t2

= v2s∇2ρ1 + 4πGρ0ρ1

类似的我们得到色散关系

ω2 = k2v2s − 4πGρ0

因此临界波矢

kJ =

√
4πGρ0
v2s

这称为金斯判据，是最简单的判断星云能否坍缩为恒星的方法

由此我们也可以给出

lJ =
2π

kJ
=

√
πv2s
Gρ0

这是对应的波长，也称为金斯长度

我们考虑一个大型的匀质球状星云，可得其引力势

Φ = −3

5

M2G

R

我们将其视为理想气体，其内能

U = 3
M

µmH

kT

当总能量 E = Φ+ U 为 0 时达到临界，我们将质量用密度表示得到临界半径

RJ =

√
15kT

4πGµmHρ
∼

√
kT

GµmHρ

这个半径称为金斯半径，其与金斯长度相当

对于有旋转与有磁场的情况，我们可以将其作用近似的视作对引力的抗衡
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恒星的早期演化

接上一节，星云在达到金斯判据后会开始坍缩，坍缩的终点是达到流体静力学平衡，此时恒星

进入原恒星阶段

流体的静力平衡状态是较为确定的物理状态，因此其在赫罗图上具有特定的位置，其称为林忠

四郎线

图 4.2: 不同质量恒星的林忠四郎线

林忠四郎线的推导可参考Hayashi track - Wikipedia，简单来说就是联立绝热梯度、绝热方程、

由灰大气模型给出的温度公式、光深的定义式以及不透明度关系 κ = κ0P
aT b

https://en.wikipedia.org/wiki/Hayashi_track
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由此我们得到林忠四郎线方程

logTeff = A logL+B logM + Const

其中

A =
0.75a− 0.25

5.5a+ b+ 1.5

B =
0.5a+ 1.5

5.5a+ b+ 1.5

恒星内部的辐射由于不透明的增加无法释放，光度逐渐下降，有效温度逐渐升高，原恒星沿着

林忠四郎线向下运动

对于一般质量的恒星，随着有效温度的不断升高，内核的氢开始初步燃烧，原恒星开始进入主

序前星阶段，随着燃烧的热调整，核心氢的燃烧效率不断提高，恒星进入主序星阶段

对于大质量恒星，其演化前期的时间很短，甚至可能没有林忠四郎线，其会迅速进入主序阶段，

并通过强烈的星风抛射表面物质

对于小质量乃至非常小质量的恒星，其热调整无法进行，甚至无法进行氢燃烧

恒星演化的中后期

主序星阶段对应于 “标准模型” 部分的内容

我们将重点讨论中低质量恒星在主序后的演化



第四章 天体物理 126

对于中低质量的恒星：

氢核燃烧完全转变为氦核，核心部分收缩，引起核心及上层的加热，因此在氦核外的氢壳层开

始燃烧，恒星脱离主序星进入亚巨星阶段

亚巨星阶段氦核并没有开始燃烧，因此会继续收缩，这使得氢壳层受到的引力增加，从而提升

了氢燃烧的速率，这使得恒星半径得到了一定程度的膨胀，而表面温度的下降限制了光子的迅速溢

出，因此亚巨星在赫罗图上表现为上升段，终点对应于巨星支

中低质量恒星的巨星支实际对应于红巨星，此时核心温度升高，压力增大，内部开始形成对流，

随着温度的进一步升高，核心氦达到简并态，但由于中低质量恒星无法提供稳定的简并环境，因此

红巨星发生 “氦闪”，核心迅速膨胀，在赫罗图上表现为一段转折

氦闪发生后，氦核成为非简并态气体，但温度合适因此继续燃烧生成碳，氢壳层则继续燃烧，

此时恒星进入水平分支，这是一个相对平稳的阶段，在赫罗图上表现为一条基本与横轴平行的线

段，终点对应于渐近巨星支

恒星进入渐进巨星支的表现与进入亚巨星类似，氦核完全转变为碳核而碳核不燃烧，氦壳层与

氢外层燃烧，形成双壳层产能，在赫罗图上同样表现为上升段，终点对应于超巨星支

恒星在超巨星支会发生对应巨星支的现象，即氦壳层进入简并态，发生第二次 “氦闪”，这个

过程称为热脉冲，在赫罗图上同样对应于一段转折，这一过程会抛射大量物质形成行星状星云，步

入演化末期

对于更低质量的恒星：

其质量无法支撑起氦的燃烧，其直接从主序左侧演变为氦白矮星

对于中等偏高质量的恒星：

在氦核达到简并态前就能满足燃烧条件，因此在巨星支不会发生氦闪，氦核将继续平稳燃烧，

但在赫罗图上同样会有多次转折，这对应于物质上翻阶段

对于更大质量的恒星：

正如基础部分提到过的那样，恒星会形成类似于洋葱的多壳层产能，直至生成铁峰元素，于是

在超巨星支发生超新星爆发

双星演化：
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我们知道密近双星之间可以通过充满洛希瓣的方式来吸积或交换物质，双星演化中最重要的

两个模型对应于 Ia 型超新星与双星系统产生的沃尔夫-拉叶（WR）星

两颗不同质量的中低质量恒星组成双星系统，其中较大质量的恒星率先演化为白矮星，而较低

质量的恒星则通过吸积作用先获得部分气体，在之后的演化过程中充满洛希瓣，此时白矮星通过吸

积作用获得气体，达到钱德拉塞卡极限后发生超新星爆炸

两颗不同质量的大质量恒星组成双星系统，较大质量的恒星率先进入 WR 星阶段，较小质量

的恒星则通过吸积作用先获得部分气体，之后 WR 星发生超新星爆发演化为致密天体，在另一颗

恒星充满洛希瓣后通过吸积作用发射强烈 X 射线，直到第二颗星也进入 WR 星阶段，最后原双星

系统演变为双致密星绕转的双星系统
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4.3.5 恒星的归宿

超新星

基础部分的阐述已经足够应对高中天文竞赛涉及的所有相关内容，其他内容请自行参考教材，

可以适当关注 I 型超新星的爆轰与爆燃

白矮星

在基础部分我们知道白矮星是由电子简并压支撑而形成的致密天体，在这里我们用经典统计

的方式来计算电子简并压

首先推导经典（非相对论）的压强与能量的关系

在经典情况下平动动能也是经典的

ε =
p2

2m

我们写出基本粒子的费米（玻色）分布

dNε =
gV m3/2

√
2π2h̄3

√
εdε

e
ε−µ
kT ± 1

其中 g = 2s+ 1 是自旋因子

因此对应的粒子总数

N =
gV m3/2

√
2π2h̄3

∫ ∞

0

√
εdε

e
ε−µ
kT ± 1

气体的总能量

E =

∫ ∞

0

εdNε =
gV m3/2

√
2π2h̄3

∫ ∞

0

ε3/2dε

e
ε−µ
kT ± 1

而我们将其与热力学势比较

Ω = −PV = ∓V gTm
3/2

√
2π2h̄3

∫ ∞

0

√
ε ln

(
1± e

ε−µ
kT

)
dε

可以得到

PV =
2

3
E

这与经典的玻尔兹曼分布是一致的

接下来我们考虑完全简并的电子气，这也相当于 g = 2 的费米气，此时电子占据了从 0 能量

值到最大能量值的所有量子态，此时动量空间的每个体积元的量子态数为

dN = 2V
4πp2dp

(2πh̄)3
= V

p2dp

π2h̄3

每个量子态上只有一个电子，因此总电子数

N =

∫
dN =

V p3F
3π2h̄3
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由此得到动量的边界值，即费米动量

pF =
(
3π2
)1/3

h̄

(
N

V

)1/3

由此也能得到费米能量

εF =
p2F
2m

=
(
3π2
)2/3 h̄2

2m

(
N

V

)2/3

我们来计算电子气的总能量

E =

∫
p2

2m
dN =

V

2mπ2h̄3

∫ pF

0

p4dp =
V p2F

10mπ2h̄3

由此我们得到（非相对论）电子简并压

P =
2E

3V
=

(3π2)
2/3

5

h̄2

m

(
N

V

)5/3

写成常见的形式即为

P =
h2

20me

(
3

π

)2/3(
ρ

µmH

)5/3

= Kρ5/3

这实际表明电子简并压是与温度无关的量

另外，当用这个公式时需要满足低温条件，对应的临界条件为简并化温度

kTF ∼ εF

接下来我们来考虑相对论性电子简并压，在这种情况下我们认为平动动能

ε = cp

因此相对论情况下的基本粒子气体对应于

N =
gV

2π2c3h̄3

∫ ∞

0

ε2dε

e
ε−µ
kT ± 1

E =

∫ ∞

0

εdNε =
gV

2π2c3h̄3

∫ ∞

0

ε3dε

e
ε−µ
kT ± 1

Ω = −PV = ∓ V gT

2π2c3h̄3

∫ ∞

0

ε2 ln
(
1± e

ε−µ
kT

)
dε

由此我们得到

PV =
1

3
E

对于电子气，之前的量子态公式还是正确的，但总能量值需要改为

E =

∫
cpdN =

cV

π2h̄3

∫ pF

0

p3dp =
V cp4F
4π2h̄3

由此我们得到相对论性电子简并压

P =
E

3V
=

(3π2)
1/3

4
h̄c

(
N

V

)4/3
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写成常见的形式即为

P =
hc

8

(
3

π

)1/3(
ρ

µmH

)4/3

= Kρ4/3

两种简并压对应了两种物态方程 P = Kργ，将其与流体静力学平衡方程联立得

1

r2
d

dr

(
r2K

ρ
γργ−1 dρ

dR

)
= −4πGρ

这个方程的解就对应于钱德拉塞卡极限

在基础部分我们提到过白矮星等致密天体的引力红移是可观测量，对于观察者而言引力红移

的近似式为

z =
∆λ

λ
=
GM

c2R

这也可以用来验证广义相对论

中子星与脉冲星

中子也是 s =
1

2
的费米子，类似上面的推导我们也可以得到中子简并压

非相对论的情况下为

P =
(3π2)

2/3

5

h̄2

m
8/3
n

ρ5/3 = Kρ5/3

相对论情况下为

P =
(3π2)

1/3

4
h̄c

(
ρ

mn

)4/3

= Kρ4/3

然而对于中子星这样的极高密度天体，强相互作用带来的影响不可忽略，也就是说在这种环境

下不只有简并中子气，我们给出的简并压也只是定性的描述中子星的物理性质，由于物态方程的复

杂性，中子星对应的质量上限并不是确定的量

接下来我们来讨论致密天体的能量，首先我们知道对应的引力能

EG =
1

2

∫
ρφdV

而对于处在热平衡条件下的粒子有

µ

m
+ φ = Const = −GM

R

我们将物态方程写为

P = Kργ = Kρ1+1/n

由化学势的定义我们得到

µ = (n+ 1)mKρ1/n

代入可得引力能

EG = −n+ 1

2

∫
PdV − GM2

2R
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而由流体静力学平衡我们又可以写出引力能

EG = 4π

∫
r3
dP

dr
dr = −3

∫
PdV

综合得到

EG = − 3

5− n

GM2

R

而物体的内能

U =

∫
µ− Pν

ν
dV = n

∫
PdV =

n

5− n

GM2

R

因此总能量

E = EG + U = −3− n

5− n

GM2

R

我们发现相对论情况下 n = 3, E = 0，这对应了临界稳定性

最后我们来看脉冲星的辐射模型，我们认为脉冲星的脉冲是简单的磁偶极辐射

在辐射理论一节中我们曾给出过电偶极辐射，类似的磁偶极辐射

P =
2m̈2

3c2

我们认为脉冲星的磁偶极矩与磁偶极场的关系为

m =
BmR

3

2

由此我们得到辐射功率

P =
B2

mR
6ω4 sin2 α

6c2

其中 ω.α 分别是转动角速度和磁矩与转动轴的夹角

脉冲星旋转时可以看作刚体，对应的转动动能

E =
1

2
Iω2

因此

P = Ė = Iωβ

这也说明由于辐射的能量耗散，脉冲星的脉冲周期是逐渐变慢的

我们定义特征时间

T =
ω

β
=

6Ic3

B2
mR

6 sin2 αω2

进一步我们得到脉冲星的年龄

t =
T

2

(
1− ω2

ω2
0

)
∼ T

2
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黑洞

黑洞是广义相对论在天体物理中的典型案例，但是对于高中生而言广义相对论是绝对陌生的

概念，没有微分几何以及场论基础的同学在理解上会有诸多困难，而从头开始完整的阐述与推导

又不现实，因此这里会直接从最后部分的推导出发，并采用相对简单的方式，相关表述参考温伯格

《引力和宇宙学》§8.2 及朗道《场论》§100

前置知识补充：

爱因斯坦场方程

Rµν −
1

2
gµνR + Λgµν = −8πGTµν

其中 gµν 是度规张量，Tµν 是宇宙介质的能动张量，Λ 是宇宙学常数，Rµν 是里奇张量,用于描

述弯曲的体积扭曲

Rµν =
∂Γλ

µλ

∂xν
−
∂Γλ

µν

∂xλ
+ Γη

µλΓ
λ
νη − Γη

µνΓ
λ
λη

其中 Γλ
µν 是 Christoffel 符号，用于表示仿射联络，一般定义为

∂eν
∂xµ

= Γλ
µνeλ

其与度规张量的关系为

Γλ
µν =

1

2
gλρ
(
∂gρν
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)
接下来我们来考虑最简单的黑洞，其无旋无电，因此其对应的模型是真空中中心对称的引力

场，我们用球坐标写出对应的时空间隔

ds2 = B (r) c2dt2 − A (r) dr2 − r2dθ2 − r2 sin2 θdφ2

接下来我们引入一些限制条件，分别是真空中的爱因斯坦场方程

Rµν = 0

由此我们得到

A (r)B (r) = Const

在距离足够远时对应的度规应当能够化为平直时空下的闵可夫斯基形式

lim
r→∞

A (r) = lim
r→∞

B (r) =1

由此我们进一步得到

A (r) =
1

B (r)

从场方程中我们还可以得到

Rθθ = −1 + B′ (r) r +B (r) = 0
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对应的边界条件是距离足够远时引力势应当能够化为牛顿势

lim
r→∞

gtt = − lim
r→∞

B (r) = −1− 2
ϕ

c2
= −1 +

2GM

c2r

由此我们可以解出

B (r) = 1− 2GM

c2r

因此对应的时空间隔即为

ds2 =

(
1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2

这对应的度规就是常说的史瓦西度规

我们发现当

r = rs =
2GM

c2

时空间隔为类光间隔，也就是说跨过史瓦西半径后时空间隔将由类时转为类空，因此视界内的

信息将永远无法跨过光锥传到外界，史瓦西黑洞的视界对应于无限红移面，这也是之前定性的结论

黑洞对应的视界面积即为

A = 4πr2s =
16πG2M2

c4

对于大于史瓦西半径处物质（如黑洞吸积盘）发出的辐射，其引力红移的效果是显著的，我们

将其表示为

z =
∆λ

λ
=

(
1− 2GM

rc2

)−1/2

− 1

接下来我们来看黑洞的热力学性质，我们认为黑洞是包含信息的，即存在黑洞熵，这最先由贝

肯斯坦提出，原始论文Black holes and the second law | Lettere al Nuovo Cimento(1971-1985) ，他

认为黑洞熵与视界面积正相关，并得出

S =
πAkc3

2hG

同时他也给出了有限能量空间的熵上限，即贝肯斯坦上限

S ≤ 2πkRE

h̄c

另外我们认为黑洞是能够发生辐射的，这最先由霍金提出，因此也称为霍金辐射，原始论

文Particle creation by black holes | Communications in Mathematical Physics，霍金认为黑洞通

过 “捕获” 虚粒子对中的一个来表现出宏观的释放能量的过程，基于热力学我们可以认为黑洞表现

出一定温度的黑体辐射，对于史瓦西黑洞这种温度是

T =
h̄c3

8πGkM

最后我们来看最一般的黑洞，其包含质量 M，电量 Q 与角动量 J，称为克尔-纽曼黑洞，这里

只给出最后的结论，推导请参考梁灿彬《微分几何入门与广义相对论》中册第 13 章

https://link.springer.com/article/10.1007/BF02757029
https://link.springer.com/article/10.1007/BF02345020
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我们给出克尔-纽曼度规

ds2 = −
(
1− 2Mr −Q2

ρ2

)
dt2 − ρ2

∆
dr2 − ρ2dθ2 −

[(
r2 + a2

)
sin2 θ +

(2Mr −Q2) a2 sin4 θ

ρ2

]
dφ2

+
2 (2Mr −Q2) a sin2 θ

ρ2
dtdφ

其中 a =
J

M
, ρ2 = r2 + a2 cos2 θ,∆ = r2 − 2Mr + a2 +Q2

我们计算无限红移面
√
−g00 = 0，得到

rs± =M ±
√
M2 − a2 cos2 θ −Q2

这表明 KN 黑洞有内外两个无限红移面，无限红移面也称为静界

而视界方程 g11 → ∞，得到

r± =M ±
√
M2 − a2 −Q2

这也表明 KN 黑洞有内外两个视界

无限红移面与视界之间的区域称为能层

图 4.3: 动图在知乎

当然我们也可以给出视界面积

A = 4π
(
r2+ + a2

)
关于致密天体的吸积过程请参考教材，只要作定性了解即可
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4.4 星系学基础

基础部分对星系部分的阐述已经基本满足竞赛的考察要求，事实上也基本对应了本节标题，而

本科专业课《星系天文学》如星系天文学笔记（知识点总结）对于竞赛的知识体系过于繁杂，因此

本部分只会针对基础部分没有涉及的内容做一些补充

4.4.1 位力定理

位力定理是经典理论力学的重要定理，用于描述有限空间中力学系统的能量关系，事实上这个

定理在量子力学中也适用

由齐次函数的欧拉定理我们得到 ∑
a

∂T

∂va

· va = 2T

我们知道
∂T

∂va

= pa，因此上式可化为

2T =
∑
a

pa · va =
d

dt

∑
a

pa · ra −
∑
a

ṗa · ra

这个式子也可以由
d

dt

∑
a pa · ra 展开得到

我们知道有界函数的导数的平均值为零

f = lim
τ→∞

1

τ

∫ τ

0

dF

dt
dt = lim

τ→∞

F (τ)− F (0)

τ
= 0

因此式子两边对时间平均，我们得到

2T = −
∑
a

ra · Fa

我们令势能是关于距离的幂次函数 U = krn，而作用力 Fa = −∂U

∂ra
，代入后我们得到

2T = nU

这是最经典的位力定理表达式，对于引力势我们得到天文上常用的形式

2 ⟨T ⟩+ ⟨U⟩ = 0

这个公式有很多作用，如我们考虑一个匀质的球体，其引力能为

U = −
∫ R

0

G

r

4πr3ρ

3
4πr2ρdr = −3GM2

5R

如果这是一个球状星云，我们认为其中气体分子的自由度为 3，即动能

ε =
3

2
kT

https://zhuanlan.zhihu.com/p/682397898
https://zhuanlan.zhihu.com/p/609784708


第四章 天体物理 136

由此我们得到

3
M

µmH

kT − 3GM2

5R
= 0

这与我们在上一节中解金斯半径的方程是一致的，进一步我们可以得到金斯质量

MJ =

(
3

4πρ

)1/2(
5kT

GµmH

)3/2

如果这是一个星系团，我们定义速度弥散是各成员星系相对整体平均速度的标准差，由于观测

视角的原因，我们认为其在一定程度上反应出了各成员星系在某一方向上的速度分量，因此这样的

系统的总动能就是

⟨T ⟩ = 3

2
M
〈
σ2
〉

由此我们可以求得整个星系团的质量

M ∼ 5R ⟨σ2⟩
G

在 IOAA 中就有类似的做法

图 4.4: IOAA2019-13

如果这对应于一个椭圆星系，由于质量分布的不均匀性，我们近似认为〈
σ2
〉
∼ GM

R
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而结合星系的质光关系，同时我们认为星系表面亮度为定值，可以推出

L ∝ σ4

这称为 Faber-Jackson 关系

类似的，对于旋涡星系也有这样的关系，但此时对应的不是速度弥散而是最大自转速度

L ∝ v4max

这称为 Tully-Fisher 关系

4.4.2 星系的旋转曲线

在基础部分我们曾给出过通过测量谱线的红蓝移来计算星系旋转曲线的方法，对于河外星系，

我们可以直接拍摄对应的光谱图像，但对于银河系本身，我们需要一些迂回的方法，这实际是一个

简单的几何问题

在现在的讨论环境下我们合理的认为恒星是绕银心作圆周运动的，太阳所处位置的半径、角速

度、线速度分别为 R0, ω0, V0，观察的恒星则为 R,ω, V，对应的夹角为 l，这实际上也是银道坐标

系下的银经
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由简单的三角关系
sin l
R

=
cosα
R0

R sinα = R0 cos l − r

我们可以得到对应恒星的速度分量

Vr = (ω − ω0)R0 sin l

Vt = (ω − ω0)R0 cos l − ωr

这称为奥尔特公式

接下来我们来看固定银经下的情况，我们对角速度之差作线性近似

(ω − ω0) ≈ (R−R0)

(
dω

dR

)
R0

我们将速度用线速度表示，得到(
dω

dR

)
R0

=
1

R0

(
dV

dR

)
R0

− V0
R2

0

我们认为 R ≈ R0 ≫ r，得到

R0 −R ≈ r cos l

综合得

Vr =

[
V0
R0

−
(
dV

dR

)
R0

]
r sin l cos l

Vt =

[
V0
R0

−
(
dV

dR

)
R0

]
r cos2 l − V0

R0

r

我们记

A =
1

2

[
V0
R0

−
(
dV

dR

)
R0

]
, B = −1

2

[
V0
R0

+

(
dV

dR

)
R0

]
称为第一与第二奥尔特常量，对应的速度可表示为

Vr = Ar sin 2l

Vt = Ar cos 2l +Br

对于有银纬 b 的恒星，奥尔特公式需要修正为

Vr = Ar sin 2l cos2 b

Vt = (Ar cos 2l +Br) cos b

当前奥尔特常量的通用值为

A = 15km · s−1 · kpc, B = −10km · s−1 · kpc

由此我们给出测量银河系自转曲线的方法，即通过测量某一银经下的谱线图像得到该方向上

各距离处的视向速度的叠加图，综合分析得到整体的自转曲线，由曲线的图像我们知道银河系也存

在着较差自转
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4.4.3 星系的特殊类型

与基础部分一样，这一节的定性认识请自行参考教材，这里只针对活动星系核（AGN）部分

做一些补充

爱丁顿光度

我们一般认为活动星系核的中心天体是巨型黑洞，对应的辐射则由其吸积盘产生，我们来考虑

一定质量的黑洞在球形吸积下能达到的最大光度

我们认为辐射压是由光子的动量改变引起的（这与高中的认识一致）

P =
F

c
=

L

4πr2c

在物理基础中我们提到过辐射压的计算采用汤姆孙散射截面，因为其也表征了绕核电子与光

子发生作用的限度

σe =
8π

3
r2c

rc =
e2

4π2ε0m0c2
是电子的经典半径，由此我们得到粒子受到辐射压的作用力

FR = σe
L

4πr2c

达到最大光度时最外层粒子的受力应当达到平衡

FR = FG =
GMmp

r2

这里直接认为外层粒子是质子-电子对，由此我们得到最大光度

LE =
4πGcmp

σe
M

这个上限称为爱丁顿光度

吸积盘温度

对于距离为 r 处的点，其对应的辐射光度

L = 2πr2σT 4

这里认为吸积盘是双面圆盘

我们认为整个吸积过程的能量由引力势提供，对应的能量释放效率

U̇ ∼ GMṀ

r

由位力定理，这部分能量的一半对应于动能，即吸积盘气体分子的热动能，另一半则对应于辐

射的光度，即

L ∼ GMṀ

2r
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由此我们得到温度

T ∼

(
GMṀ

4πσr3

)1/4

对于 r 足够大的点，温度对应为

T (r) =

(
3GMṀ

8πσrs3

)1/4(
r

rs

)−3/4

其中 rs 是中央黑洞的史瓦西半径

引力透镜

最后我们来看引力透镜效应，这并不是 AGN 对应的现象，一般大质量的星系在良好条件下都

能产生可观测的引力透镜现象

引力透镜实际对应了引力场作用下光线的弯曲，接下来我们从经典角度与广义相对论角度推

导这个偏转角

首先我们从最经典的轨道力学出发，我们认为光子在经过大质量天体时是沿双曲线运动，且

e≫ 1，因此其对应的偏转角

∆φ = 2φ = 2 arctan a
b
∼ e

2

我们有活力公式

c2 = GM

(
2

r
+

1

a

)
∼ GM

(
2

r0
+

e

r0

)
∼ GMe

r0

这里的 r0 是最接近中央天体的距离，也称为透射半径

由此我们得到偏转角

∆φ ∼ 2GM

c2r0
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接下来我们从广义相对论入手，同样的我们认为中央天体的引力场是中心对称的，我们写出对

应的史瓦西度规

ds2 = B (r) c2dt2 − A (r) dr2 − r2dθ2 − r2 sin2 θdφ2

为了后续的表示方便这里还是先采取原始形式

前置知识：

我们写出相对论下的运动方程

d2xµ

dp2
+ Γµ

νλ

dxν

dp

dxλ

dp
= 0

其中 p 是轨道参量，对于光子
ds

dp
= 0

类似于轨道力学中的做法，我们取 θ =
π

2
，并给出相应的运动积分

J = r2
dφ

dp

−E = A (r)

(
dR

dp

)2

+
J2

r2
− 1

B (r)

由此我们得到相对论下的 “比耐方程”

A (r)

r4

(
dR

dφ

)2

+
1

r2
− 1

J2B (r)
= − E

J2

对应的角度积分即为

φ = ±
∫

A1/2 (r) dR

r2
[

1
J2B(r)

− E
J2 − 1

r2

]1/2
我们来考虑光子经过引力场的行为，很显然

J = b, E = 0

其中 b 是瞄准距离，在最近处有

J = r0

(
1

B (r0)

)1/2

对应的偏转角为

∆φ = 2 |φ (r0)− φ∞| − π

全部代入，并用史瓦西度规的标准形式进行替换，我们得到偏转角

∆φ =
4GM

c2r0

这正好是经典情况下的 2 倍

一般我们也取近似 b ∼ r0
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4.4.4 星际物质

星际物质的相关内容很丰富，但考察相对较少，这其中最常见的星际消光已经前移至基础部

分，而相对进阶的辐射转移也可以很快的得出

Iν = I0e
−τ +Bν (T )

(
1− e−τ

)
这一节为了知识的完整性会补充两种经典的物理过程

激波

激波是星际气体动力学的典型过程，在往年的集训队选拔中也有出现

激波出现在气体超声速运动的过程中，此时气体的动力学量发生间断，间断面就对应于激波面

激波是相对简单的物理过程，我们不必写出连续性方程，取与激波同速的参考系，激波两侧有

质量守恒

ρ0u0 = ρ1u1

动量守恒

P0 + ρ0u
2
0 = P1 + ρ1u

2
1

能量守恒

E0 + P0u0 = E1 + P1u1

而初始能量对应于（宏观）动能与内能（对应的平动动能）

E = ρu

(
1

2
u2 +

3

2

P

ρ

)
由此我们得到比能量守恒

1

2
u20 +

5

2

P0

ρ0
=

1

2
u21 +

5

2

P1

ρ1
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我们写出激波两侧的局部声速

v2s =
5

3

P

ρ

这几个方程构成了描述激波的完备方程组，我们定义马赫数 M =
u

a
，得到速度比

u1
u0

=
M0 + 3

4M2
0

对于强激波 M0 ≫ 1，我们得到
u1
u0

=
1

4
,
ρ1
ρ0

= 4

我们认为 P1 ≫ P0，可以估计激波后的温度

T1 =
3

16

µmH

k
u20

激波一般用来描述星风通过星际气体时的相互作用

电离

电离是非常基本的物理过程，其不只存在于星际物质当中，这里我们叙述电离过程中最基本的

萨哈方程（这可能需要一些化学基础）

首先我们来看一般的化学过程，有化学平衡∑
νiAi = 0

νi, Ai 分别是反应系数与反应物质

系统的吉布斯函数应当保持极值，因此化学势平衡∑
νiµi = 0

而各组分的化学势对应

µi = RT lnPi + χi (T )

由此我们得到压强平衡常数

KP (T ) =
∏

P νi
i = exp

(
−
∑
νiχi

RT

)
考虑电离，各步电离可表示为

Ai = Ai+1 + e−

其中 A0 表示中性原子，有化学平衡

ci
ci+1c

= P ·K(n)
P (T )
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电中性

c =
∑

ici

其中 c 是电子浓度，对于理想气体

χi (T ) = ε0i − CpiT lnT − Tζi

进一步的，对于单原子气体

Cp =
5

2
, ζ = ln

[
g
( m

2πh̄

)1/2]
这里的 g = (2L+ 1)(2S + 1) 表示基态权重，全部代入后我们得到萨哈方程

K
(n)
P =

gn−1

2gn

(
2π

m

)3/2
h̄3

T 5/2
exp

(
In
RT

)
其中 In 表示第 n 级电离能

只考虑一级电离，我们可以得到电离度

α =
1√

1 + PK
(1)
P

关于星际气体的电离-复合过程请自行参考教材
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4.5 宇宙学基础

宇宙学是天体物理部分的最后一节，相比前面的几节内容，宇宙学在竞赛中的考察基本都是定

性的，一般只要求基础部分中的结论的运用

宇宙学的相关内容更偏向于理论物理，这对于高中生而言有较高的门槛，而一般的天体物理教

材对于宇宙学的推导部分也是避而不谈，这也是对学生数学物理基础不足的妥协

用初等的工具描述深刻的物理图像只是权宜之计（就像普物的力学与电磁学），在这一节中并

不会刻意避免使用相对高等的数学工具，但会相应减少过多的数学物理运算，这不会影响对相关概

念的理解与运用

参加竞赛的同学可以直接看结论，对宇宙学感兴趣的同学可以参考温伯格《引力与宇宙学》进

行进一步的学习，相比指南适当调整了本文的内容安排

4.5.0 数学基础——对称空间

一般高中生的微分几何基础是相当缺乏的，但这里我们并不会补充张量分析的相关内容，之前

提到过的 Ricci 张量、Christoffel 符号等都是张量分析的基本内容，也是广义相对论中的重要工具，

但在宇宙学相关的结论推导中它们并没有那么大的作用

在基础部分我们曾给出过宇宙学原理，这表明宇宙时空应当具有良好的对称性，在这里我们给

出对称空间的相关数学基础

我们在相对论中将统一采用自然单位制 c = 1

Killing 矢量

如果一个度规在坐标变换后关于宗量的形式与原先一样，那我们将其称为形式不变

g′µν (x) = gµν (x)

这个关系可以重表示为

gµν (x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ (x

′)

我们将满足这个式子的变换称为等度规变换

我们来考虑无限小坐标变换

x′µ = xµ + εξµ (x) , |ε| ≪ 1

利用协变分量 ξσ = gµσξ
µ，我们可以化简得到

∂ξσ
∂xρ

+
∂ξρ
∂xσ

− 2ξµΓ
µ
ρσ = 0

也可以表示为

ξσ;ρ + ξρ;σ = 0

https://zhuanlan.zhihu.com/p/682896174
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我们将满足这个条件得四维矢量场 ξσ 称为对应度规的 Killing 矢量

Killing 矢量与曲率张量的关系为

ξµ;ρ;σ = −Rλ
σρµξλ

如果一个度规最大允许 N (N + 1) /2 个相互独立的 Killing 矢量，那我们称这个度规是最大对

称的，由此定义出的空间就是最大对称空间，可以证明：

最大对称空间一定是均匀且点点各向同性的

这与宇宙学原理不谋而合，因此我们认为宇宙时空是 “具有最大对称子空间的空间”

最大对称空间

首先我们用曲率的方式来构建最大对称空间

我们不加证明的给出，最大对称空间的曲率张量的缩并是个常数，我们定义

Rλ
λ = −N (N − 1)K

其中 K 称为曲率常量

由此我们给出 N + 1 维最大对称空间的度规形式

−ds2 = Cµνdx
µdxν +K−1dz2

我们考虑 N 维球面，将其嵌入到空间当中

KCµνx
µxν + z2 = 1

在这个球面上有

dz2 =
K2 (Cµνx

µdxν)2

z2
=
K2 (Cµνx

µdxν)2

1−KCµνxµxν

因此度规为

gµν (x) = Cµν +
K

1−KCµνxµxν
Cµλx

λCνκx
κ

这个度规下有

Γµ
νλ = Kxµgνλ

因此测地线方程可以简单的表示为

d2xµ

ds2
+Kxµ = 0

这表明 K 确实是描述空间曲率的完备量，在此基础上我们取 Cµν 为 |K|−1 倍单位矩阵，得到

由曲率表示的度规

ds2 = |K|−1

[
dx2 +

(x · dx)2

1− x2

]
特别的，对于 K = 0，有

ds2 = dx2

这与我们认为的平坦空间是一致的
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具有最大对称子空间的空间

接下来我们从一般角度考虑具有最大对称子空间的空间的度规形式

对于具有 M 维最大对称子空间的 N 维空间，我们用 (N −M) 个记号 va 来区分这些子空间，

用 M 个坐标 ui 来标记每个子空间中的点

因此

ξa (u, v) = 0

我们可以将度规表示为

−ds2 = gab (v) dv
avb + f (v) g̃ij (u) du

iduj

我们将 Killing 矢量的定义式展开，其应当对应三个方程组

∂ξk (u, v)

∂ui
gkj (u, v) +

∂ξk (u, v)

∂uj
gki (u, v) + ξk (u, v)

∂gij (u, v)

∂uk
= 0

∂ξk (u, v)

∂ui
gka (u, v) +

∂ξk (u, v)

∂va
gik (u, v) + ξk (u, v)

∂gia (u, v)

∂uk
= 0

∂ξk (u, v)

∂va
gkb (u, v) +

∂ξk (u, v)

∂vb
gka (u, v) + ξk (u, v)

∂gab (u, v)

∂uk
= 0

我们的目的是通过解方程组得到对应系数的关系，并进一步得到度规的表达式，事实上我们应

当关注最终的结果，因此接下来的推导会略去部分复杂的计算与证明

为了让 g′ia = 0，我们构建一组函数 Uk (v; u0) 满足

gik (U, v)
∂Uk

∂va
= −gia (U, v) , Uk (v0; u0) = uk0

其中的微分方程也可以表示为
∂Uk

∂va
= −F k

a (U, v)

其中 F k
a (U, v) = gij (U, v) gia (U, v) , gij 是逆 “矩阵”

利用 Uk 的幂级数展开，我们可以得到该方程可积的条件（这里省略其中的计算）

∂F k
a (u, v)

∂ul
F l
b (u, v)−

∂F k
a (u, v)

∂vb
=
∂F k

b (u, v)

∂ul
F l
a (u, v)−

∂F k
b (u, v)

∂va

只要满足这个条件，我们就可以构建坐标使得 gia = g′ia = 0，这正是我们想要的

于是 Killing 矢量三个条件中的后两个可以表示为

∂ξk

∂va
gik = 0
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ξk
∂gab
∂uk

= 0

进一步我们可以得出
∂ξk

∂va
= 0

∂gab
∂uk

= 0

这也表明

gij (u, v) = f (v) g̃ij (u)

到这里计算的主体部分已经完成，我们可以给出度规的形式

−ds2 = gab (v) dv
advb + f (v)

[
du2 +

k (u · du)2

1− ku2

]

其中

k =


+1, K > 0

−1, K < 0

0, K = 0

其中 K 是最大对称子空间的曲率常数

4.5.1 罗伯逊-沃尔克（R-W）度规

宇宙学原理回顾

在上一节中我们提到，宇宙时空是 “具有最大对称子空间的空间”，这实际上就对应了宇宙学

原理的基本假设，我们将其完整的表述为

1. 宇宙标准时为恒量的超曲面是整个时空的最大对称子空间

2. 所有形如 gµν , Tµν 这样的宇宙学张量对于这些子空间的等度规变换都是形式不变的

R-W 度规

我们合理的认为在大尺度上宇宙时空是中心对称的，因此我们用球坐标系重写上一节中给出

的度规

ds2 = dt2 −R2 (t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
这样的度规形式称为罗伯逊-沃尔克（R-W）度规其中 R(t) 是关于时间的函数，具有长度的

量纲，称为宇宙尺度因子

k 与之前一样用来表征宇宙时空的曲率，可以取 +1,0 或-1

r, θ, φ 都是共动坐标，这表明 t 既是共动坐标系中静止观察者的固有时，也是标准宇宙时
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在这样的度规下，两点间的固有距离

d (t) =

∫ r1

0

√
grrdr = R (t)

∫ r1

0

dr√
1− kr2

不难看出，R-W 度规是宇宙学原理的数学表示，并不包含其他作用带来的影响

R-W 度规下的物质行为

我们考虑能动张量与星系流 Tµν , J
µ
G

基于宇宙学原理，我们知道这样的宇宙学张量的等度规变换是形式不变的，因此张量形式需要

满足

J t
G = nG (t) , J i

G = 0

Ttt = ρ (t) , Tit = 0, Tij = gijp (t)

简洁的写为

Jµ
G = nGU

µ

Tµν = (ρ+ p)UµUν + pgµν

其中 Uµ = (1, 0, 0, 0) 是四维速度

我们发现宇宙介质的能动张量与理想流体的形式是一致的

我们认为在宇宙中星系数及总能量是守恒的

(Jµ
G):µ = g−1/2 ∂

∂xµ
(
g1/2Jµ

G

)
= g−1/2 ∂

∂t

(
g1/2nG

)
= 0

(T µν);ν =
∂p

∂xν
gµν + g−1/2 ∂

∂xν
[
g1/2 (ρ+ p)UµU ν

]
+ Γµ

λν (ρ+ p)UλU ν = 0

由此我们可以得到

nG (t)R3 (t) = Const

对于物质主导的宇宙，我们忽略压强，得到

ρ (t)R3 (t) = Const

对于辐射主导的宇宙，我们有 P =
ρ

3
，因此

ρ (t)R4 (t) = Const

4.5.2 宇宙学红移与距离

宇宙学红移

在基础部分我们提到，宇宙膨胀本身会带来一定的速度，这种速度作用于天体上就会引发多普

勒效应，从而产生宇宙学红移；这种说法虽不准确，但确实解释了宇宙尺度因子与红移之间的关系，

这里我们做一些浅显的推导
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我们知道光子沿零测地线运动

0 = ds2 = dt2 −R2 (t)
dr2

1− kr2

对于 t1 时刻发出，t0 时刻接收到的光子，有

f (r1) =

∫ t0

t1

dt

R (t)
=

∫ r1

0

dr√
1− kr2

我们考虑这个距离上的波动，有

f (r1) =

∫ t0+∆t0

t1+∆t1

dt

R (t)

由此我们得到
∆t0
R (t0)

=
∆t1
R (t1)

于是接收到的频率之比
ν0
ν1

=
∆t1
∆t0

=
R (t1)

R (t0)

我们得到宇宙学红移的表达式

z =
R (t0)

R (t1)
− 1

这表明我们应当关注宇宙尺度因子的比值，而不是其绝对大小

接下来的红移都默认指代宇宙学红移

距离-红移关系

我们需要明确距离的定义才能用红移来计算，而基于当前的观测手段我们在这里给出两种距

离，另外的自行距离及角直径距离请参考教材

首先我们来考虑光子的运动轨迹，这是定义距离所必要的

我们先给出简单的轨迹方程

x′ (ρ) = nρ

其中 n 是单位矢量，利用 R-W 度规，我们给出完整的轨迹方程

x (ρ) = nρ+ x1

{(
1− kρ2

)1/2 − [1−
(
1− kr21

)1/2
] (n · x1)

} ρ

r21

其中 r1 = (x2
1)

1/2

类似于图像，我们认为

n ∼ −x1 + ε

由此我们给出对应的瞄准距离

b ∼ R (t0) |x (r1)| ∼ R (t0) r1 |ε|
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而对应的视线方向

u ∼ −
(
1− kr21

)1/2(dx (ρ)

dρ

)
r1

∼ x1 −
(
1− kr21

)1/2
ε

因此视线夹角

θ ∼ |u− x1| ∼
(
1− kr21

)1/2 |ε| ∼ (1− kr21
)1/2 b

R (t0) r1

我们定义视差距离

dP =
b

θ
= R (t0)

r1

(1− kr21)
1/2

我们假想一个接收器，其面积为

A = πb2

由此我们得到其接受到的光子比值

|ε|
4

=
A

4πR2 (t0) r21
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利用红移，我们得到实际接受到的功率

P = L

(
R (t1)

R (t0)

)2
A

4πR2 (t0) r21

因此实际接受到的亮度为

l =
P

A
=

LR2 (t1)

4πR4 (t0) r21

我们定义光度距离

dL =

(
L

4πl

)1/2

= R2 (t0)
r1

R (t1)

我们将其用红移来表示

dL = r1R (t0) (1 + z)

接下来我们来看宇宙尺度因子，我们将其展开到二阶

R (t) = R (t0)

[
1 +H0 (t− t0) +

1

2
q0H

2
0 (t− t0)

2 + · · ·
]

其中 H0 =
Ṙ (t0)

R (t0)
, q0 = −R̈ (t0)

R (t0)

Ṙ2 (t0)
分别对应哈勃常数与减速因子

利用之前的红移公式我们可以给出回顾时间

(t0 − t1) =
1

H0

[
z −

(
1 +

q0
2

)
z2 + · · ·

]
全部代入后我们得到光度距离与红移间的关系

dL = H−1
0

[
z − 1

2
(1− q0) z

2 + · · ·
]

其中的一阶项就对应我们常说的哈勃定律

4.5.3 弗里德曼方程

这一节中我们将对标准宇宙学模型——ΛCDM 模型做一些简单的计算

弗里德曼方程

我们曾给出过爱因斯坦场方程

Rµν −
1

2
gµνR + Λgµν = −8πGTµν

其中的度规张量对应 R-W 度规，而在上一节中我们也已经给出能动张量应与理想流体的形式

一致，所以我们的目的是求出 Ricci 张量的表达式

我们先求得 R-W 度规下的仿射联络

Γt
ij = RṘg̃ij
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Γi
tj =

Ṙ

R
δij

Γi
jk =

1

2

(
g̃−1
)il
(
∂g̃lj
∂xk

+
∂g̃lk
∂xj

− ∂g̃jk
∂xl

)
= Γ̃i

jk

波浪线表示最大对称子空间中的度规、仿射联络（及下面的 Ricci 张量）

我们由此给出 Ricci 张量的分量

Rtt =
3R̈

R

Rti = 0

Rij = R̃ij −
(
RR̈ + 2Ṙ2

)
g̃ij

利用子空间对应的三维共动坐标，我们将已知量全部代入场方程，可以最终化简得到两个独立

方程

3R̈ = −4πG (ρ+ 3P )R + ΛR

3
(
Ṙ2 + k

)
= 8πGρR2 + ΛR2

其中第二个方程可以化为

H2 =

(
Ṙ

R

)2

=
8πG

3
ρ+

Λ

3
− k

R2

这个方程称为弗里德曼方程，其表征了宇宙的动力学过程

从这个方程中我们可以定义临界密度

ρc =
3H2

8πG

有时我们将弗里德曼方程表示为无量纲形式

1 = ΩM(t) + ΩΛ(t) + Ωk(t)

很显然对应的参量为

ΩM(t) =
ρ

ρc
=

8πGρ

3H2
,ΩΛ(t) =

Λ

3H2
,Ωk(t) = − k

R2H2

不带 t 的量表示当前取值

ΩM =
ρ0
ρc0

=
8πGρ0

3H0
2 ,ΩΛ =

Λ

3H0
2 ,Ωk = − k

R0
2H0

2

在物质主导的宇宙，我们可以将减速因子用对应的参量表示

q = −R̈R
Ṙ2

=
1

2
ΩM (t)− ΩΛ (t)

进一步的对于 Λ = 0，有

q =
1

2
ΩM (t)

在这种情况下宇宙膨胀一定是在减速的，而基于当前的观测数据我们也可以反过来证明宇宙

学常数的确存在，且导致了宇宙的加速膨胀
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物质主导的宇宙动力学

在基础部分我们提到，当前的宇宙是物质主导的，因此我们将重点讨论物质主导的宇宙的动力

学解

我们知道物质主导的宇宙中有

ρ (t)R3 (t) = Const

由此我们可以得到参量的关系式

ΩM (t) = ΩM

(
H0

H

)2

(1 + z)3

ΩΛ (t) = ΩΛ

(
H0

H

)2

Ωk (t) = Ωk

(
H0

H

)2

(1 + z)2

我们可以将弗里德曼方程可以化为(
Ṙ

R

)2

= H2
0

{
1 + zΩM +

[
(1 + z)−2 − 1

]
ΩΛ

}
由此可以给出回顾时间

(t0 − t1) = H−1
0

∫ z

0

(1 + z1)
−1 [(1 + z1)

2 (1 + ΩMz1)− z1 (2 + z1) ΩΛ

]−1/2
dz1

在 ΩΛ = 0 或 ΩM + ΩΛ = 1 的条件下有解析解

我们接下来考虑 Λ = 0 的情况

首先我们直接给出修正的距离-红移关系

dL =
2

H0Ω2
M

[
zΩM + (ΩM − 2)

(
−1 +

√
zΩM + 1

)]
这个公式的推导与之前是一致的，写成与之前对应的形式有

dL =
1

H0q20

[
zq0 + (q0 − 1)

(
−1 +

√
2q0z + 1

)]
接下来我们来考虑回顾时间的解，我们关注的是当前的宇宙时，这对应于宇宙的演化年龄

t = H−1
0

∫ R/R0

0

(
1− ΩM +

ΩM

x

)−1/2

dx

t0 = H−1
0

∫ 1

0

(
1− ΩM +

ΩM

x

)−1/2

dx

由此我们可以根据 ΩM 的大小给出不同情况下的宇宙时

t0 =



H−1
0

ΩM

2 (ΩM − 1)3/2

[
cos−1

(
2Ω−1

M − 1
)
− 2

ΩM

(ΩM − 1)1/2
]
, ΩM > 1

H−1
0

ΩM

2 (ΩM − 1)3/2

[
2

ΩM

(ΩM − 1)1/2 − cosh−1(2Ω−1
M − 1)

]
, ΩM < 1

2

3
H−1

0 , ΩM = 1
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我们发现 ΩM → 0 时，t0 →
1

H0

，这与我们在基础部分的阐述是一致的

对于 ΩM = 1 的情况，其对应于平坦的宇宙，称为爱因斯坦-德西特宇宙，这种情况下宇宙尺

度因子可以简单的写为
R

R0

=

(
t

t0

)2/3

我们可以画出不同 ΩM 或 k 对应的宇宙尺度因子

物质主导的宇宙视界

在 IOAA 中曾出现过关于视退行速度的讨论，在基础部分我们提到过宇宙学红移可以视作视

退行速度的多普勒红移，但这样的理解无法用于视退行速度超过光速的情况，我们需要从宇宙学的

角度来理解

图 4.5: IOAA2018-1
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类似于黑洞的定义，我们将能够接受信息的最大限度称为视界

首先我们来考虑共同坐标下的天体发出的辐射，这种限度称为粒子视界，很显然其条件对应于∫ rH(t)

0

dr√
1− kr2

=

∫ t

0

dt′

R (t′)

因此视界对应的固有距离

dH (t) = R (t)

∫ rH(t)

0

dr√
1− kr2

= R (t)

∫ t

0

dt′

R (t′)

我们认为 t′ 积分的大部分都来自物质主导期，利用之前的动力学解我们得到

dH (t) =



R (t)

R0H0

√
2q0 − 1

cos−1

[
1− (2q0 − 1)R (t)

q0R0

]
, q0 >

1
2

R (t)

R0H0

√
1− 2q0

cosh−1

[
1 +

(1− 2q0)R (t)

q0R0

]
, q0 <

1
2

2

H0

(
R (t)

R0

)3/2

, q0 =
1
2

我们发现，对于 q0 ≤
1

2
的模型，dH (t) 的增长速度高于 R (t)，这意味着在足够长的时间内粒

子视界将膨胀到包含一切共动粒子

我们讨论的视界应当对应 q0 >
1

2
的情况，亦称为闭合的宇宙，在这种模型下，我们给出最后

闭合的时间限 tmax

我们给出事件视界，这一视界的固有距离为

dE (t) = R (t)

∫ tmax

t

dt′

R (t′)
=

R (t)

R0H0

√
2q0 − 1

{
2π − cos−1

[
1− (2q0 − 1)R (t)

q0R0

]}
我们取合适的减速因子如 q0 = 1，此时无论是粒子视界还是事件视界都要大于

1

H0

，这实际上

表明视退行速度超过光速的天体也是可以被探测到的

4.5.4 宇宙演化早期的物理模型

温度-红移关系

我们来考虑物质与辐射热平衡下的温度关系，首先由斯特藩-玻尔兹曼公式，辐射的能量密度

为

ργ =
4σ

c
T 4 = aT 4

对应的总能量密度即为

ρ = nm+ (γ − 1)−1 nkt+ aT 4

总压强则为

p = nkT +
1

3
aT 4

我们有粒子数守恒

nR3 = n0R
3
0
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能量守恒（对应于之前 R-W 度规下的物质性为）

d

dR

(
ρR3

)
= −3pR2

于是我们得到
R

T

dT

dR
= − s+ 1

s+ 1
3
(γ − 1)−1

其中 s =
4aT 3

3nk
是每个粒子的平均光子熵

我们认为热宇宙 s≫ 1，此时

T ∝ R−1

因此对应的温度-红移关系即为

T (z) = T0 (1 + z)

这个式子往往用来推测微波背景辐射产生的时间

宇宙早期热力学过程

宇宙早期的热力学过程集中于光子与轻子的热演化，我们将其合理的简化为统计物理中的极

端相对论性气体来进行计算

热力学过程涉及核物理，这里将尽量简洁的给出常用的结论，详细推导请参考教材

我们先给出粒子的玻色与费米分布

ni (q) dq = 4πh−3giq
2dq

[
exp

(
Ei(q)− µi

kT

)
± 1

]−1

为了避免与压强混淆，这里的动量用 q 表示
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对应粒子的化学势之间有

µe − µνe = µν− − µνµ = µn − µp

我们合理的近似认为宇宙早期各粒子类的量子数守恒且为 0，从中可以得到

µi = 0

由此我们给出总能量密度与压强

ρeq (T ) =
∑
i(eq)

∫
Ei (q)ni (q;T ) dq

peq (T ) =
∑
i(eq)

∫ (
q2

3Ei (q)

)
ni (q;T ) dq

我们认为体积 R3 (t) 中的熵是守恒量，这其实也对应能量守恒

S
(
R3, T

)
=
R3

T
[ρeq (T ) + peq (T )] = Const

对于相对论性气体有

peq (T ) =
1

3
ρeq (T )

于是我们又得出

T ∝ R−1

这个公式其实在宇宙早期的大部分过程中都是成立的

我们来考虑温度下降中的两个过程，这也对应于图上正反电子对湮灭的两端

对于温度较高的那一端，中微子刚从粒子中退耦出来，有整体热平衡

ρνe = ρνe = ρνµ = ρνµ = ρν

我们计算中微子对应的能量密度

ρν = 4πh−3

∫ ∞

0

q3
[
exp

( q

kT

)
+ 1
]−1

dq =
7

16
aT 4

相对论性电子的能量密度

ρe− = ρe+ = 2ρν =
7

8
aT 4

于是总能量密度

ρ = ρνe + ρνe + ρνµ + ρνµ + ρe− + ρe+ + ργ =
9

2
aT 4

类似的，温度较低的那一端的总能量密度为

ρR = ρνe + ρνe + ρνµ + ρνµ + ργ
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我们不加证明的给出

ρR =

[
1 +

7

4

(
4

11

)4/3
]
aT 4

γ = 1.45aT 4
γ

我们认为宇宙早期是 “辐射主导” 的

ρ ∝ R−4

并认为 k = Λ = 0，由此我们给出弗里德曼方程

ρ̇

ρ
= −4

Ṙ

R
= −4

(
8πGρ

3

)1/2

对应的解即为

t =

(
3

32πGρ

)1/2

+ C

代入我们得到两个阶段的时间

t1 = 1.09s

[
T

1010K

]−2

t2 = 1.92s

[
Tγ

1010K

]−2

关于其他的热力学过程请参考教材

宇宙原初核合成（BBN）

咕了，请自行参考教材

其他

之后的恒星形成就对应于金斯判据的相关计算，在恒星物理部分已有阐述

宇宙学本身是内容非常丰富的一门课程，这里也只是给出一些最基本的定理基础，有兴趣的同

学可以参考合适的教材作更深入的了解



第五章 天文观测

从总分上看，观测并不占大头，但在物理群雄争霸的 IOAA中，观测依旧是非常重要的抢分点

5.1 纸上观测

这一部分以观察星图为主，主要有以下题型

5.1.1 给特定的星点、星座、线，指出其名称

这类题首先要熟悉全天的大致布局，对于一些特定的指示星座需要敏感，国内比赛一般会选择

较著名的星与星座，IOAA 可能会考察南天星空、3 等左右的恒星等，另外，IOAA 是全英文作答，

需要牢记 88 星座拜耳名及亮星的通用名称。

5.1.2 梅西耶天体相关

主要包括给图说名称，给位置说名称，判断是否属于某个星座等，需要对 110 个梅西耶天体了

熟于心（国内一般考较著名的梅西耶天体）

5.1.3 一些特殊的常识题

如“天赤道经过的星座（按顺序）”、“某颗星的赤经约为”等

5.1.4 补星

IOAA 特色，不作评价

5.2 实际观测

5.2.0 熟悉望远镜的使用

多摸摸就会了（注意标准）

161
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5.2.1 用望远镜观测地上的

这种情况一般是看板或者 LED 屏，根据上面的字作答

5.2.2 用望远镜观测天上的

这种情况一般包括找到特定的星，通过星来推测视角与放大倍率等

5.2.3 用眼睛观测天上的

目视 没什么好说的

总结

多积累观测经验，实际观测没什么捷径可走



第六章 实测/Data Analysis

实测（Data Analysis）是国际天文奥赛中的题型，考察方式接近当前物理竞赛中的实验题，你

需要根据题目给出的背景构建相应的模型，并依据模型分析题目给出的数据，合理的估计误差，同

时适当外推给出模型的预测结果

这一部分的内容对应于大学物理实验中最基本的数据分析，已经有非常多的资源可以参考，这

里只是给出一些天文竞赛中常用的结论作为备用

6.1 简单的数据拟合与分析

这一节实际就是高中数学的统计部分，这里我们简单的作一些回顾

我们考虑一个离散的随机变量组，每一个变量 Xi 对应的概率为 P (Xi)，由此我们可以给出随

机变量的期望

E (X) =
∑

XiP (Xi)

随机变量的方差

D (X) =
∑

[Xi − E (X)]2 P (Xi) = E
(
X2
)
− E2 (X)

当随机变量都取为数值时，这组数据的平均值对应于期望

我们考虑一组二元随机变量 (xi, yi)，样本中心点为 (x, y)，给出线性相关系数

r =

∑
(xi − x) (yi − y)√∑

(xi − x)2
∑

(yi − y)2

如果 |r| ∼ 1，我们认为两个数据元之间是线性相关的，有线性回归方程

ŷ = b̂x+ â

b̂ =

∑
(xi − x) (yi − y)∑

(xi − x)2
=

∑
xiyi − nxy∑
x2i − nx2

â = y − b̂x

样本中心一定在回归直线上
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我们通过对数据的预处理或者迭代可以得到其他回归方程，如 ŷ = b̂ lnx + â,ŷ = ĉx2 + b̂x + â

等，我们用相关系数来评价拟合的结果

R2 = 1−
∑

(yi − ŷ̂i)
2∑

(yi − yi)
2

各种常见的拟合模型在 991 等计算器中都有，竞赛时可以直接使用

高中那些常用的分布在竞赛中基本不做考察，这里不再给出

有时一些数据偏差特别大的点会影响拟合的效果，我们需要剔除这些点，此时需要用到箱线图

如图所示，我们将第 25 百分位数与第 75 百分位数之间的范围用箱子框起来，箱子的长度称

为四分位距 IQR

在高中我们已经知道了第 N 百分位的概念，简单而言，我们将数据从小到大排列，当第 N 百

分位不是整数时向上取整数位作为取值，若是整数则取该位与向上更大的那一位的平均值作为取

值，在计算器中，第 25 与第 75 用 Q1 与 Q3 表示，称为下四分位与上四分位

我们取 Q3+1.5*IQR 与 Q1-1.5*IQR 作为上下限，超出这个范围的值称为离群值或异常值，用

圆圈标记，在一般的计算中这样的数据点是需要剔除的

有时我们会取 Q3+3*IQR 与 Q1-3*IQR 作为更宽的上下限，超出这个范围的值称为极端的离

群值或异常值，用星号标记

6.2 误差分析

与物理实验不同的是，天文竞赛中不会刻意强调误差的来源与分类，我们应当直接对测量的结

果做分析，此时所有的误差以及对应的偏差量都归于一个量，我们将其定义为不确定度
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对于待测的物理量 Y，我们给出测量结果 N 的不确定度

Y = N ±∆N

这表明测量结果会聚集在一个范围内，我们称其为置信区间，待测物理量位于置信区间的概率

称为置信概率，很显然，概率与区间的大小成正相关，当置信概率达到 100% 时，我们称对应的不

确定度为极限不确定度，此时可以表示为

Y = N ± e

有时我们也会使用相对不确定度

NR =
∆N

N

对于连续测量，我们可以利用测量结果来估计不确定度，这也是数据分析的常用手段，在这种

情况下，我们合理的认为不确定度近似等于方差

Y = N ± σ

请注意，这里的方差的定义式为

σN =

√∑(
Ni −N

)2
n− 1

我们可以用浅显的方式来解释为什么分母是 n− 1 而不是 n

我们给出 “方差”（这其实应当称为标准差）的期望

E
(
s2
)
=

1

n

∑
E
(
Ni −N

)2
由之前不确定的定义，我们应当认为每次测量结果都是有偏差的，因此期望应当写为

E
(
s2
)
=

1

n
E
∑[

(Ni − µ)−
(
N − µ

)]2
这里的偏差实际就对应了我们的方差，经过化简我们得到

E
(
s2
)
=

1

n

[∑
E (Ni − µ)2 − nE

(
N − µ

)2]

由此我们得到标准差与方差的关系式

s2 =
n− 1

n
σ2

更多的解释可以参考问题为什么样本方差（sample variance）的分母是 n-1

进一步的我们定义标准不确定度

σN =

√∑(
Ni −N

)2
n (n− 1)
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此时可以表示为

Y = N ± σN

有时物理量并不能直接测出，我们需要通过多个量混合得到最终的结果，可以认为测量结果是

各间接测量结果的函数

N = f (qi)

我们对两边取对数

lnN = ln f

再做全微分
dN

N
=
∑ ∂ ln f

∂qi
dqi

对于一般精度的测量，我们可以认为相对不确定度是个小量，由此我们可以得到

σN
N

=

√√√√∑(
∂ ln f
∂qi

σqi

)2

对于一般的幂指数合成，我们可以得到简单的关系

σN
N

=

√(aσx
x

)2
+

(
bσy
y

)2

+ · · ·
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结语

到此为止，这篇指南的主体部分就结束了。本指南实际上更多的是纪念我自己五年的天文竞赛

生涯以及其中的收获，同样，也以此纪念我们这几届的天文选手们。如今我们的时代已经过去，曾

经的荣誉也已沉淀，接下来就是你们的时代了

祝愿学弟学妹们都能取得理想的成绩

站上最高领奖台！
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请注意，这里的数学与物理内容本身并不与天文相关，对于只想学习天文的同学而言没有多大

作用。希望这份提纲能够给一些有志于学习更深内容（比较闲）的同学一点参考。

首先需要声明，这份提纲的内容与难度已经大大超过了高中应该教授以及学习的范围，但根据

我本人及其他同学的经验，这份提纲中的大部分内容都是当代高中生可以理解并掌握的内容，学习

这些内容的同学应该具备足够的自学与理解能力，如果遇到了无法理解的内容请参考其他教材或

Wikipedia，对于超出自己能力的部分请不要逞强。

A.1 参考书目

这里给出的大部分参考书目我都有并且翻阅过，从我个人感受来说，数学及物理方面的教材，

国外普遍优于国内，但由于翻译及个人风格的原因，对于初学者而言还是建议从国内教材入手，逐

步深入。

A.1.1 数学部分

数学部分的教材主要推荐 “俄罗斯数学教材选译”（高教社）系列与 “华章数学译丛”（机械工

业社），从我本人的学习来看，这些书深入浅出，概念深刻，习题丰富（推荐做），基本都属于经典

教材，但可能会有大量理解上的困难，必要时可以参考读书笔记等相关资料。

分析

《高等数学（同济）》、《数学分析教程》

《数学分析》（卓里奇）、《数学分析习题集》

《微积分学教程》（这本书是古典微积分教材，与数分有区别）

《实变函数论》、《陶哲轩实分析》

《函数论与泛函分析初步》

《复变函数论》、《复分析导论》
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代数

《简明线性代数》、《高等代数》

《代数学引论》

《代数》、《矩阵代数》

《近世代数》

《初等数论》、《代数数论入门》

几何

《解析几何》、《高等几何》

《代数几何》

《现代几何学：方法与应用》

《微分几何入门与广义相对论》

概率

《概率论基础教程》

《概率》

《概率论与数理统计》

其他

《数学指南—实用数学指南》

《图论导引》

A.1.2 物理部分

普通物理学

《普通物理学教程》（力、电磁、热）、《新概念物理教程》

《力学》（舒幼生）、《电磁学》（赵凯华）

《光学教程》（姚启钧）、《现代光学基础》（钟锡华）

《原子物理学》（杨福家）

理论力学

《力学（下）理论力学》（梁昆淼）

《力学》（朗道）

《Classical Mechanics》（Goldstein）
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电动力学

《场论》、《连续介质电动力学》

《Classical Electrodynamics》（Jackson）

《Introduction to Electrodynamics》（Griffiths）

热力学·统计物理

《热力学·统计物理》（汪志诚）、《热力学与统计物理学》（林宗涵）

《统计物理学 I》

《Statistical Mechanics》（Pathria）

《Statistical Mechanics Entropy, Order Parameter, and Complexity》（Sethna）

量子力学

《Introduction to Quantum Mechanics》（Griffiths）

《Modern Quantum Mechanics》（Sakurai）

《量子力学》（科恩塔诺季）

数学物理方法

《数学物理方法》（梁昆淼）

A.2 数学提纲

我一直认为，数学首先是一种工具，虽然纯粹数学经过百年的发展已经逐渐摆脱了工具的属

性，但对于高中生尤其是有志于从事物理方面研究的人而言，依旧应当将目光重点着眼于数学的应

用层面，而不能过度纠结于概念本身。

但同样的，数学并不只是工具，尤其不是解题与学习其他知识时使用的工具，学习物理的人应

当对数学体系有系统的认识，物理图像的建立也应当有充分且扎实的数学基础，因此数学部分的内

容会以适合物理学生的数学系方式编排。

A.2.1 分析

分析部分按照传统数学分析——复分析——实分析——泛函分析的顺序

从集合到映射

集合的概念

映射的概念
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集合的势

实数集

公理化集合体系

更一般意义上的映射

度量空间

拓扑空间

连续映射

映射的极限与微分

极限的引入

极限的概念

序列、数列、函数的极限

从极限到连续

从导数到单变量微分

函数的可微性

导数与微分

微分学的基本定理

从微分角度研究函数

反函数与一元隐函数

多元函数微分法

Rm 空间的引入

多元函数的极限与连续

多元函数的微分（偏导部分）

多元映射的微分（雅各比矩阵）

多元函数的极值与条件极值

多元隐函数定理

Rm 空间上的曲面与微分

从微分到单变量积分

原函数与不定积分

黎曼积分（积分）的概念
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积分的性质与定理

积分的运用

反常积分

多重积分与场论初步

高维空间的黎曼积分

集合上的积分

重积分与反常重积分

曲线积分与曲面积分

常用的积分公式

向量场与微分

场论中的积分

向量场的势与向量势

微积分的运用 常微分方程

微分方程的分类与可解性

常见微分方程的通用解法

级数的引入与运用

级数的概念

级数的收敛

函数展开到级数

欧拉-麦克劳林公式

渐进级数与渐进展开

更一般的分析

含参变量的积分

函数的卷积与广义函数入门

含参变量的重积分

傅里叶级数与傅里叶积分

偏微分方程

偏微分方程的分类与可解性

达朗贝尔公式与定解问题
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分离变数法

本征函数与本征值问题

球函数、柱函数与贝塞尔函数

格林函数法

积分变换法

保角变换法

数域的扩张 复分析引论

复数域的表示

复变函数（全纯函数）的概念与微分

复变函数的积分

复变函数的级数展开

留数定理与运用

复数域上的傅里叶变换

拉普拉斯变换

多复变函数（多变量全纯函数）初步

实分析引论

测度理论

可测函数

勒贝格积分与抽象积分

测度的收敛

符号测度与微分

函数的扩张 泛函分析引论

赋范线性空间与线性拓扑空间

连续线性泛函与线性算子

可和函数空间

变分法原理

线性积分空间

A.2.2 代数

这部分本来以代数基本结构作为先行课，但考虑到大部分高中生对 “线性” 没有充分且直观的

认识，因此决定将线代初步提前
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线性代数 I

线性方程组的解

矩阵的概念与基本运算

行列式的计算与性质

矩阵代数初步

代数基本结构

群论的构造

群的基本结构

环的基本结构

域的基本结构

域的扩张

线性代数 II

连续映射与线性空间

二次型与二次曲线

线性映射与线性算子

向量空间与纯量乘积

代数思想在几何的运用（仿射与射影）

张量的引入与初步计算

代数理论入门 初等数论

复数域与多项式环

多项式环的因式分解

整除与同余

多项式的根与代数基本定理

分数域与连分数

不定方程的根

基础数论函数

解析数论入门

伽罗瓦理论与数论

从复变函数角度研究数论

数论函数的狄利克雷级数

HTTPS://ZHUANLAN.ZHIHU.COM/P/675454546


附录 A 写给高中生的数学物理提纲 175

黎曼函数

A.2.3 几何

高中生推荐阅读圆锥曲线题目的三维矢量解法

“这门课已逐渐被认为是过时的了”

现代几何学早已不是只研究几何性质的学科，它已与代数与分析之间建立起十分紧密的关系，

这一部分的重点在代数几何与微分几何

从圆锥曲线到解析几何

欧几里得角度下的圆锥曲线

二次曲线

用参数确定曲线性质

二次曲面

代数几何入门

仿射几何与仿射群

射影几何与射影群

高次曲线与高次超曲面

希尔伯特零点定理

平面代数曲线

微分几何入门

曲面度量与曲面几何

黎曼及伪黎曼空间上的张量

李代数

张量的微分

曲率张量

流形的引入

流形的概念与例子

流形上的群

流形的光滑映射
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几何上的拓扑

同伦与映射度

流形的覆盖空间

覆盖空间的同伦群

光滑纤维丛

A.2.4 概率

概率从物理上说并没有什么应用的价值，在物理上更多的使用 “统计”，但对于高中生来说，课

本上的概率描述过于简略与模糊，应当有一些系统性的学习。

古典概率模型

初等概率论概念

伯努利概型

随机游动

马尔可夫过程

马尔可夫链的概念

马尔可夫性

马尔可夫链的极限、遍历与平稳

测度空间 分析与概率

可测空间与概率测度

随机变量与勒贝格积分

随机变量的中心极限

测度的收敛

数理统计的基本定理

随机过程论

鞅

强、弱随机序列

下鞅与鞅的收敛
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A.3 物理提纲

这一部分的内容主要基于综合类大学对于物理系学生的教学安排，对于完整过过物竞三轮（四

大力学）的同学可以选择略过或者用作查漏补缺的参考

A.3.1 普通物理学

力学

参考系与坐标系

运动学的基本方法

非惯性系下的动力学

质心系下的动力学

角动量与刚体定轴转动

简谐运动的表示与合成

平面简谐波

流体的运动学与动力学初步

相对论初步

电磁学

静电场的基本现象

高斯定理

导体与电介质

静磁场的基本现象及不同解释

B-S 定理与安培环路定理

磁介质

电偶极子与磁矩

电磁感应与电磁波

麦氏方程的表示与运用

基本的直流与交流电路

交流电的表示与计算

热学

理想气体的状态方程

范德瓦尔斯气体的状态方程

理想气体的热学过程
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热二熵的计算与运用

分子动理论（平衡态）

麦克斯韦-玻尔兹曼分布

分子动理论（非平衡态）

暂态过程与输运过程

物态与相变

光学

几何光学的基本模型

波动光学（干涉）

菲涅尔公式的推导与运用

波动光学（衍射）

从半波带到积分衍射

波动光学（偏振）

晶体中的偏振双折射

常用的光学仪器

光的吸收、散射、色散

现代光学基础

近代物理

洛伦兹变换与狭义相对论

光的量子性

普朗克辐射定律

原子模型与结构

相对论与质能方程

经典的近代物理实验

A.3.2 理论力学

自由度的引入

自由度与广义坐标

约束与达朗贝尔原理

最小作用量原理

力学变分初步
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哈密顿原理

雅可比最小作用量原理

拉格朗日力学系统

拉格朗日方程

运动积分

诺特原理

非自然的拉格朗日系统

哈密顿力学系统

勒让德变换与哈密顿正则方程

相空间

刘维尔定理

泊松括号

刚体动力学

刚体定点转动的自由度

角动量与惯量张量

欧拉动力学方程

几种常见的定点转动模型

小振动的研究方法

多自由度的振动系统

拉格朗日函数法

简正模（矩阵解法）

非简谐振动的简谐近似

流体动力学

从一般的弹性体讲起

流体的连续性方程

无黏性流体的欧拉方程

黏性流体的纳维-斯托克斯方程
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正则力学系统

正则变换

哈密顿-雅可比方程

分离变量

浸渐不变量

非线性力学入门

非线性振动

参变共振

平衡与稳定

混沌现象

A.3.3 电动力学

进一步的麦氏方程

电磁场方程

连续性方程

能量密度与能流

张量的引入与运用

电磁场中的四维矢量

电磁场张量

能量动量张量

真空下的电磁场

运动电荷产生的场

偶极矩、多极矩与磁矩

拉莫尔定理

推迟势与李纳-维谢尔势

电磁波的辐射

电子对电磁波的影响

介质内的电磁场

导体内的电磁波
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谐振腔与传输线

介质内的电磁场方程

色散介质对电磁场的影响

介质中电磁波的传播

电磁场的相对论协变

电磁场的规范不变形

电磁场的洛伦兹变换

A.3.4 热力学·统计物理

更一般的热力学量

内能、焓、自由能与吉布斯函数

热力学函数的全微分

麦克斯韦关系

热辐射的热力学性质

单元与多元相变

热动平衡判据

单元复相系的平衡

临界点与两相相变

朗道连续相变

多元复相系的平衡

吉布斯相律

化学平衡

不可逆过程入门

局域平衡

昂萨格倒易关系

非线性过程与耗散结构

经典统计物理入门

粒子运动的经典与量子描述

等概率原理与最概然分布

玻尔兹曼分布与玻尔兹曼统计

HTTPS://ZHUANLAN.ZHIHU.COM/P/675454546


附录 A 写给高中生的数学物理提纲 182

固体热容的统计理论

玻色分布与玻色统计

费米分布与费米统计

光子气体与自由电子气体

系综理论

微正则系综

正则系综

巨正则系综

涨落理论

涨落的准热力学理论

临界点的涨落

布朗运动理论

非平衡态理论入门

弛豫时间

非平衡态物理典例

玻尔兹曼积分微分公式

H 定理

量子统计理论入门

量子能级

量子粒子的描述

量子统计中的三大分布

量子系综理论

A.3.5 量子力学

经典的量子现象

波动力学与薛定谔方程

波函数的引入

量子态叠加原理

（定态）薛定谔方程
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无限深方势阱

线性谐振子

自由粒子与 δ 势

有限深势阱

形式理论

希尔伯特空间与表象

厄米算符与本征函数

算符的对易性

不确定性关系

狄拉克符号

三维空间中的量子力学

球坐标下的薛定谔方程

库伦势下的薛定谔方程

角动量

电子自旋

微扰理论

非简并定态微扰

简并微扰

用变分法研究微扰

时间微扰

精细结构与塞曼效应

全同粒子（接量子统计）

现代量子力学初步

绝热定理与绝热近似

贝里相位

量子散射

波恩近似
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